Skip to main content

Endo-β-1,4-xylanase: An Overview of Recent Developments

  • Chapter
  • First Online:
  • 1050 Accesses

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 3))

Abstract

This chapter presents the main important aspects about the enzyme endo-beta-1,4-xylanase. It starts with the biological grounds for the use of the enzyme. Moving on, the advancements in the production process and optimisation are substantially described, along with the microorganisms and a broad range of molecular techniques used to obtain best performance enzyme. Finally, it delineates the most common applications related to xylanase, such as in biobleaching, baking, feedstock and the enzymatic role in juice and ink industries, among others. Furthermore, the material brings updated research performed during the last few years combined with essential established facts along the time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anand L, Vithayathil PJ (1996) Xylan-degrading enzymes from the thermophilic fungus Humicola Zanuginosa (Griffon and Maublanc) Bunce: action pattern of xylanase and p-glucosidase on xylans, xylooligomers and arabinoxylooligomers. J Ferment Bioeng 81:511–517

    Article  Google Scholar 

  • Anasontzis GE, Zerva A, Stathopoulou PM, Haralampidis K, Diallinas G, Karagouni AD, Hatzinikolaou DG (2011) Homologous overexpression of xylanase in Fusarium oxysporum increases ethanol productivity during consolidated bioprocessing (CBP) of lignocellulosics. J Biotechnol 152:16–23

    Article  Google Scholar 

  • Aranda-Barradas JS, Garibay-Orijel C, Badillo-Corona JA, Salgado-Manjarrez E (2010) A stoichiometric analysis of biological xylitol production. Biochem Eng J 50:1–9

    Article  Google Scholar 

  • Autio K, Harkonen H, Parkkonen T, Frigard T, Poutanen K, Siika-aho M, Aman P (1996) Effects of purified endo-beta-xylanase and endo-beta-glucanase on the structural and baking characteristics of rye doughs. LWT Food Sci Technol 29:18–27

    Article  Google Scholar 

  • Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  Google Scholar 

  • Bakir U, Yavascaoglu S, Guvenc F, Ersayin A (2001) An endo-beta-1,4-xylanase from Rhizopus oryzae: production, partial purification and biochemical characterization. Enzyme Microb Technol 29:328–334

    Article  Google Scholar 

  • Ball AS, McCarthy AJ (1988) Saccharification of straw by actinomycete enzymes. J Gen Microb 134:2139–2147

    Google Scholar 

  • Battan B, Sharma J, Dhiman SS, Kuhad RC (2007) Enhanced production of cellulase-free thermostable xylanase by Bacillus pumilus ASH and its potential application in paper industry. Enzyme Microb Technol 41:733–739

    Article  Google Scholar 

  • Beachemin KA, Rode LM, Karren D (1999) Use of enzymes in feed lot finishing diets. Can J Anim Sci 79:243–246

    Article  Google Scholar 

  • Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microb Biotechnol 56:326–338

    Article  Google Scholar 

  • Belkacemi K, Hamoudi S (2003) Enzymatic hydrolysis of dissolved corn stalk hemicelluloses: reaction kinetics and modeling. J Chem Technol Biotechnol 78:802–808

    Article  Google Scholar 

  • Bhargav S, Panda BP, Ali M, Javed S (2008) Solid-state fermentation: an overview. Chem Biochem Eng Q 22:49–70

    Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  Google Scholar 

  • Bibi Z, Shahid F, Qader SAU, Aman A (2015) Agar–agar entrapment increases the stability of endo-beta-1,4-xylanase for repeated biodegradation of xylan. Int J Biol Macromol 75:121–127

    Article  Google Scholar 

  • Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3:286–290

    Article  Google Scholar 

  • Biely P, Vrsanska M, Gorbacheva IV (1983) The active site of an acidic endo-1,4-beta-xylanase of Aspergillus niger. Biochim Biophys Acta 743:155–161

    Article  Google Scholar 

  • Biely P, VrSanskh M, Tenkanen M, Kluepfel D (1997) Endo-beta-1,4-xylanase families: differences in catalytic properties. J Biotechnol 57:151–166

    Article  Google Scholar 

  • Brutus A, Villard C, Durand A, Tahir T, Furniss C, Puigserver A, Juge N, Giardina T (2004) The inhibition specificity of recombinant Penicillium funiculosum xylanase B towards wheat proteinaceous inhibitors. Biochim Biophys Acta 1701:121–128

    Article  Google Scholar 

  • Buchert J, Oksanen T, Pere J, Siika-aho M, Suurnakki A, Viikari L (1998) Applications of Trichoderma reesei enzymes in the pulp and paper industry. In: Harman GF, Kubicek CP (eds) Trichoderma & gliocladium–enzymes, biological control and commercial applications, Taylor and Francis Ltd., London, UK, vol 2, pp 343–63

    Google Scholar 

  • Butt MS, Tahir-Nadeem M, Ahmad Z, Sultan MT (2008) Xylanases in baking industry. Food Technol Biotechnol 46:22–31

    Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900

    Article  Google Scholar 

  • Cai H, Shi P, Bai Y, Huang H, Yuan T, Yang P, Luo H, Meng K, Yao B (2011) A novel thermoacidophilic family 10 xylanase from Penicillium pinophilum C1. Process Biochem 46:2341–2346

    Article  Google Scholar 

  • Cardoso CAB, de Castilho ARF, Salomao PMA, Costa EN, Magalhaes AC, Buzalaf MAR (2014) Effect of xylitol varnishes on remineralization of artificial enamel caries lesions in vitro. J Dent 42:1495–1501

    Article  Google Scholar 

  • Chanwicha N, Katekaew S, Aimi T, Boonlue S (2015) Purification and characterization of alkaline xylanase from Thermoascus aurantiacus var. levisporus KKU-PN-I2-1 cultivated by solid-state fermentation. Mycosci 56:309–318

    Article  Google Scholar 

  • Chen S, Kaufman MG, Miazgowicz KL, Bagdasarian M, Walker ED (2013) Molecular characterization of a cold-active recombinant xylanase from Flavobacterium johnsoniae and its applicability in xylan hydrolysis. Bioresour Technol 128:145–155

    Article  Google Scholar 

  • Chen C-C, Luo H, Han X, Lv P, Ko T-P, Peng W, Huang C-H, Wang K (2014) Structural perspectives of an engineered beta-1,4-xylanase with enhanced thermostability. J Biotechnol 189:175–182

    Article  Google Scholar 

  • Collins T, Gerday C, Feller C (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microb Rev 29:3–23

    Article  Google Scholar 

  • Collins T, Hoyoux A, Dutron A, Georis J, Genot B, Dauvrin T, Arnaut F, Gerday C, Feller G (2006) Use of glycoside hydrolase family 8 xylanases in baking. J Cereal Sci 43:79–84

    Article  Google Scholar 

  • Coughlan MP, Hazlewood GP (1993) β-1,4-D-Xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol Appl Biochem 17:259–289

    Google Scholar 

  • Damásio ARL, Silva TM, Almeida FBR, Squina FM, Ribeiro DA, Leme AFP, Segato F (2011) Heterologous expression of an Aspergillus niveus xylanase GH11 in Aspergillus nidulans and its characterization and application. Process Biochem 46:1236–1242

    Article  Google Scholar 

  • Damen B, Pollet A, Dornez E, Broekaert WF, van Haesendonck I, Trogh FI, Arnaut F, Delcour JA, Courtin CM (2012) Xylanase-mediated in situ production of arabinoxylan oligosaccharides with prebiotic potential in whole meal breads and breads enriched with arabinoxylan rich materials. Food Chem 131:111–118

    Article  Google Scholar 

  • de Groot PWJ, Basten DEJW, Sonnenberg ASM, Van Griensven L, Visser JLDJ, Schaap PJ (1998) An endo-1,4-beta-xylanase-encoding gene from Agaricus bisporus is regulated by compost-specific factors. J Mol Biol 277:273–284

    Article  Google Scholar 

  • Deesukon W, Nishimura Y, Harada N, Sakamoto T, Sukhumsirichart W (2011) Purification, characterization and gene cloning of two forms of a thermostable endo-xylanase from Streptomyces sp. SWU10. Process Biochem 46:2255–2262

    Article  Google Scholar 

  • Deng P, Li D, Cao Y, Lu W, Wang C (2006) Cloning of a gene encoding an acidophilic endo-beta-1,4-xylanase obtained from Aspergillus niger CGMCC1067 and constitutive expression in Pichia pastoris. Enzyme Microb Technol 39:1096–1102

    Article  Google Scholar 

  • Do TT, Quyen DT, Nguyen TN, Nguyen VT (2013) Molecular characterization of a glycosyl hydrolase family 10 xylanase from Aspergillus niger. Protein Expr Purif 92:196–202

    Article  Google Scholar 

  • Esteghlalian AR, Kazaoka MM, Lowery BA, Varvak A, Hancock B, Woodward T, Turner JO, Blum DL, Weiner D, Hazlewood GP (2008) Prebleaching of softwood and hardwood pulps by a high performance xylanase belonging to a novel clade of glycosyl hydrolase family 11. Enzyme Microb Technol 42:395–403

    Article  Google Scholar 

  • Fenel F, Leisola M, Jänis J, Turunen O (2004) A de novo designed N-terminal disulphide bridge stabilizes the Trichoderma reesei endo-1,4-beta-xylanase II. J Biotechnol 108:137–143

    Article  Google Scholar 

  • Fenel F, Zitting A-J, Kantelinen A (2006) Increased alkali stability in Trichoderma reesei endo-1,4-beta-xylanase II by site directed mutagenesis. J Biotechnol 121:102–107

    Article  Google Scholar 

  • Filho EXF, Puls J, Coughlan MP (1993) Physicochemical and catalytic properties of a low-molecular-weight endo-l,4-beta-D-xylanase from Myrothecium verrucaria. Enzyme Microb Technol 15:535–540

    Article  Google Scholar 

  • Franceschin G, Sudiro M, Ingram T, Smirnova I, Brunner G, Bertucco A (2011) Conversion of rye straw into fuel and xylitol: a technical and economical assessment based on experimental data. Chem Eng Res Des 89:631–640

    Article  Google Scholar 

  • Fujimoto Z, Kuno A, Kaneko S, Kobayashi SYH, Kusakabe I, Mizuno H (2000) Crystal structure of Streptomyces olivaceoviridis E-86 beta-xylanase containing xylan-binding domain. J Mol Biol 300:575–585

    Article  Google Scholar 

  • Georis J, Giannotta F, Lamotte-Brasseur J, Devreese B, van Beeumen J, Granier B, Frere J-M (1999) Sequence, overproduction and purification of the family 11 endob-1,4-xylanase encoded by the xyl1 gene of Streptomyces sp. S38. Gene 237:123–133

    Article  Google Scholar 

  • Gomes DJ, Gomes J, Steiner W (1994) Factors influencing the induction of endo-xylanase by Thermoascus aurantiacus. J Biotechnol 33:87–94

    Article  Google Scholar 

  • Gonçalves TA, Damásio ARL, Segato F, Alvarez TM, Bragatto J, Brenelli LB, Citadini APS, Murakami MT, Ruller R, Leme AFP, Prade RA, Squina FM (2012) Functional characterization and synergic action of fungal xylanase and arabinofuranosidase for production of xylooligosaccharides. Bioresour Technol 119:293–299

    Article  Google Scholar 

  • Gorbacheva IV, Rodionova NA (1977) Studies on xylan-degrading enzymes II. Action pattern of endo-1,4-beta-xylanase from aspergillus niger str. 14 on xylan and xylooligosaccharides. Biochim Biophys Acta 484:94–102

    Article  Google Scholar 

  • Granström TB, Izumori K, Leisola M (2007) A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl Microb Biotechnol 74:273–276

    Article  Google Scholar 

  • Guerfali M, Gargouri A, Belghith H (2011) Catalytic properties of Talaromyces thermophilus-l-arabinofuranosidase and its synergistic action with immobilized endo-beta-1,4-xylanase. J Mol Catal B Enzym 68:192–199

    Article  Google Scholar 

  • Haapala R, Parkkinen E, Suominen P, Linko S (1996) Production of endo-1,4-beta-glucanase and xylanase with nylon-web immobilized and free Trichoderma reesei. Enzyme Microb Technol 18:495–501

    Article  Google Scholar 

  • Harris AD, Ramalingam C (2010) Xylanases and its application in food industry: a review. J Exp Sci 1:01–11

    Google Scholar 

  • He J, Yu B, Zhang K, Ding X, Chen D (2009) Expression of endo-1,4-beta-xylanase from Trichoderma reesei in Pichia pastoris and functional characterization of the produced enzyme. BMC Biotechnol 9:56

    Article  Google Scholar 

  • Heck JX, Soares LHB, Hertz PF, Ayub MAZ (2006) Purification and properties of a xylanase produced by Bacillus circulans BL53 on solid-state cultivation. Biochem Eng J 32:179–184

    Article  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    Article  Google Scholar 

  • Hrmova M, Biely P, Vrsanska M, Petrakova E (1984) Induction of cellulose- and xylan-degrading enzyme complex in the yeast Trichosporon cutaneum. Arch Microb 138:371–376

    Article  Google Scholar 

  • Huang CF, Jiang YF, Guo GL, Hwang WS (2011) Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process. Bioresour Technol 102:3322–3329

    Article  Google Scholar 

  • Hung K-S, Liu S-M, Tzou W-S, Lin F-P, Pan C-L, Fang T-Y, Sund K-H, Tang S-J (2011) Characterization of a novel GH10 thermostable, halophilic xylanase from the marine bacterium Thermoanaerobacterium saccharolyticum NTOU1. Process Biochem 46:1257–1263

    Article  Google Scholar 

  • Huy ND, LeNguyen C, Seo J-W, Kim D-H, Park S-M (2015) Putative endoglucanase PcGH5 from Phanerochaete chrysosporium is a b-xylosidase that cleaves xylans in synergistic action with endo-xylanase. J Biosci Bioeng 119:416–420

    Article  Google Scholar 

  • Hwang T, Lim HK, Song HY, Cho SJ, Chang J-S, Park N-J (2010) Cloning and characterization of a xylanase, KRICT PX1 from the strain Paenibacillus sp. HPL-001. Biotechnol Adv 28:594–601

    Article  Google Scholar 

  • Irfan M, Nadeem M, Syed Q (2014) One-factor-at-a-time (OFAT) optimization of xylanase production from Trichoderma viride-IR05 in solid-state fermentation. J Radiat Res Appl Sci 7:317–326

    Article  Google Scholar 

  • Jacobsen SE, Wyman CE (2000) Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes. Appl Biochem Biotechnol 84–86:81–96

    Google Scholar 

  • Jänis J, Pulkkinen P, Rouvinen J, Vainiotalo P (2007) Determination of steady-state kinetic parameters for a xylanase-catalyzed hydrolysis of neutral underivatized xylooligosaccharides by mass spectrometry. Anal Biochem 365:165–173

    Article  Google Scholar 

  • Jimenez L, Martinez C, Perez I, Lopez F (1997) Biobleaching procedures for pulp and agricultural residues using Phanerochaete chroysosporium and enzymes. Process Biochem 4:297–304

    Google Scholar 

  • Jun H, Bing Y, Keying Z, Daiwen C (2009) Functional characterization of a recombinant thermostable xylanase from Pichia pastoris: a hybrid enzyme being suitable for xylooligosaccharides production. Biochem Eng J 48:87–92

    Article  Google Scholar 

  • Juturu V, Wu JC (2012) Microbial xylanases: engineering, production and industrial applications. Biotechnol Adv 30:1219–1227

    Article  Google Scholar 

  • Kaialy W, Maniruzzaman M, Shojaee S, Nokhodchi A (2014) Antisolvent precipitation of novel xylitol-additive crystals to engineer tablets with improved pharmaceutical performance. Int J Pharm 477:282–293

    Article  Google Scholar 

  • Kapoor M, Nair LM, Kuhad RC (2008) Cost-effective xylanase production from free and immobilized Bacillus pumilus strain MK001 and its application in saccharification of Prosopis juliflora. Biochem Eng J 38:88–97

    Article  Google Scholar 

  • Karaoglana M, Yildiza H, Inan M (2014) Screening of signal sequences for extracellular production of Aspergillus niger xylanase in Pichia pastoris. Biochem Eng J 92:16–21

    Article  Google Scholar 

  • Kim T, Jeong JC, Yoo YJ (2012) Hydrophobic interaction network analysis for thermostabilization of a mesophilic xylanase. J Biotechnol 161:49–59

    Article  Google Scholar 

  • Kim HM, Lee KH, Kim KH, Lee D-S, Nguyen QA, Bae H-J (2014) Efficient function and characterization of GH10 xylanase (Xyl10 g) from Gloeophyllum trabeum in lignocellulose degradation. J Biotechnol 172:38–45

    Article  Google Scholar 

  • Kirilin AV, Tokarev AV, Kustov LM, Salmi T, Mikkola J-P, Yu DM (2012) Aqueous phase reforming of xylitol and sorbitol: comparison and influence of substrate structure. Appl Catal A Gen 435–436:172–180

    Article  Google Scholar 

  • Knob A, Carmona EC (2008) Xylanase production by Penicillium sclerotiorum and its characterization. World Appl Sci J 4:277–283

    Google Scholar 

  • Ko C-H, Tsai C-H, Tu J, Yang B-Y, Hsieh D-L, Jane W-N, Shih T-L (2011) Identification of Paenibacillus sp. 2S-6 and application of its xylanase on biobleaching. Int Biodeterior Biodegrad 65:334–339

    Article  Google Scholar 

  • Koch E (1886) Pharm. Z. Russland, 26, 657. Ber. them. Ges., Ref., 20, 145. 1887

    Google Scholar 

  • Kormelink FJM, Hoffmann RA, Gruppen H, Voragen AGJ, Kamerling JP, Vliegenthart FG (1993) Characterisation by H NMR spectroscopy of oligosaccharides derived from alkali-extractable wheat-flour arabinoxylan by digestion with endo-(1 + 4)-P-D-xylanase III from Aspergillus awamori. Carbohydr Res 249:369–382

    Article  Google Scholar 

  • Krengel U, Dijkstra BW (1996) Three-dimensional structure of endo-1,4-beta-xylanase I from Aspergillus niger: molecular basis for its low pH optimum. J Mol Biol 263:70–78

    Article  Google Scholar 

  • Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microb Rev 23:411–456

    Article  Google Scholar 

  • Kumar KS, Manimaran A, Permaul K, Singh S (2009) Production of β-xylanase by a Thermomyces lanuginosus MC 134 mutant on corn cobs and its application in biobleaching of bagasse pulp. J Biosci Bioeng 107:494–498

    Article  Google Scholar 

  • Li XT, Jiang ZQ, Li LT, Yang SQ, Feng WY, Fan JY, Kusakabe I (2005) Characterization of a cellulase-free, neutral xylanase from Thermomyces lanuginosus CBS 288.54 and its biobleaching effect on wheat straw pulp. Bioresour Technol 96:1370–1379

    Article  Google Scholar 

  • Li L, Tian H, Cheng Y, Jiang Z, Yang S (2006) Purification and characterization of a thermostable cellulase-free xylanase from the newly isolated Paecilomyces themophila. Enzyme Microb Technol 38:780–787

    Article  Google Scholar 

  • Li X, She Y, Sun B, Song H, Zhu Y, Lv Y, Song H (2010) Purification and characterization of a cellulase-free, thermostable xylanase from Streptomyces rameus L2001 and its biobleaching effect on wheat straw pulp. Biochem Eng J 52:71–78

    Article  Google Scholar 

  • Li X, Li E, Zhu Y, Teng C, Sun B, Song H, Yang R (2012) A typical endo-xylanase from Streptomyces rameus L2001 and its unique characteristics in xylooligosaccharide production. Carbohydr Res 359:30–36

    Article  Google Scholar 

  • Li H, Kankaanpää A, Xiong H, Hummel M, Sixtac H, Ojamo H, Turunen O (2013) Thermostabilization of extremophilic Dictyoglomus thermophilum GH11 xylanase by an N-terminal disulfide bridge and the effect ofionic liquid [emim]OAc on the enzymatic performance. Enzyme Microb Technol 53:414–419

    Article  Google Scholar 

  • Li J, Zhou P, Liu H, Xiong C, Lin J, Xiao W, Gong Y, Liu Z (2014) Synergism of cellulase, xylanase, and pectinase on hydrolyzing sugarcane bagasse resulting from different pretreatment technologies. Bioresour Technol 155:258–265

    Article  Google Scholar 

  • Li H, Voutilainen S, Ojamo H, Turunen O (2015a) Stability and activity of Dictyoglomus thermophilum GH11 xylanaseand its disulphide mutant at high pressure and temperature. Enzyme Microb Technol 70:66–71

    Article  Google Scholar 

  • Li Z, Guo X, Feng X, Li C (2015b) An environment friendly and efficient process for xylitol bioconversion from enzymatic corncob hydrolysate by adapted Candida tropicalis. Chem Eng J 263:249–256

    Article  Google Scholar 

  • Lin X-Q, Han S-Y, Zhang N, Hu H, Zheng S-P, Ye Y-R, Lin Y (2013) Bleach boosting effect of xylanase A from Bacillus halodurans C-125 in ECF bleaching of wheat straw pulp. Enzyme Microb Technol 52:91–98

    Article  Google Scholar 

  • Liu J-R, Yu B,  Liu F-H,  Cheng K-J, Zhao, X (2005) Expression of rumen microbial fibrolytic enzyme genes in probiotic Lactobacillus reuteri. Appl Environ Microbiol 71:6769–6775

    Google Scholar 

  • Ma P, Li T, Wu W, Shi D, Duan F, Bai H, Dong W, Chen M (2014) Novel poly(xylitol sebacate)/hydroxyapatite bio-nanocomposites via one-step synthesis. Polym Degrad Stab 110:50–55

    Article  Google Scholar 

  • Maalej-Achouri I, Guerfali M, Romdhane IB-B, Gargouri A, Belghith H (2012) The effect of Talaromyces thermophilus cellulase-free xylanase and commercial laccase on lignocellulosic components during the bleaching of kraft pulp. Int Biodeterior Biodegrad 75:43–48

    Article  Google Scholar 

  • Maat J, Roza M, Verbakel J, Stam H, da Silra MJS, Egmond MR, Hagemans MLD, van Garcom RFM, Hessing JGM, van Derhondel C, van Rotterdam C (1992) Xylanases and their application in baking. In: Visser J, Beldman G, van Someren MAK, Voragen AGJ (eds) Xylan and xylanases. Elsevier, Amsterdam, pp 349–360

    Google Scholar 

  • Makuta T, Kadoya K, Izumi H, Miyatake M (2015) Synthesis of cyanoacrylate-covered xylitol microcapsules for thermal storage. Chem Eng J 273:192–196

    Article  Google Scholar 

  • Mamo G, Hatti-Kaul R, Mattiasson B (2006) A thermostable alkaline active endo-beta-1-4-xylanase from Bacillus halodurans S7: Purification and characterization. Enzyme Microb Technol 39:1492–1498

    Article  Google Scholar 

  • Mander P, Choi YH, Pradeep GC, Choi YS, Hong JH, Cho SS, Yoo JC (2014) Biochemical characterization of xylanase produced from Streptomyces sp. CS624 using an agro residue substrate. Process Biochem 49:451–456

    Article  Google Scholar 

  • McCleary BV, McKie VA, Draga A, Rooney E, Mangan D, Larkin J (2015) Hydrolysis of wheat flour arabinoxylan, acid-debranched wheat flour arabinoxylan and arabino-xylo-oligosaccharides by b-xylanase, a-L-arabinofuranosidase and b-xylosidase. Carbohydr Res 407:79–96

    Article  Google Scholar 

  • Meagher MM, Tao BY, Chow JM, Reilly PJ (1988) Kinetics and subsite mapping of A D-xylobiose- and D-XmsE producing Aspergiflus niger endo-(1+4)-/W-xylanase. Carbodydr Res 173:273–283

    Article  Google Scholar 

  • Michaux C, Pouyez J, Mayard A, Vandurm P, Housen I, Wouters J (2010) Structural insights into the acidophilic pH adaptation of a novel endo-1,4-beta-xylanase from Scytalidium acidophilum. Biochimie 92:1407–1415

    Article  Google Scholar 

  • Moukouli M, Topakas E, Christakopoulos P (2011) Cloning and optimized expression of a GH-11 xylanase from Fusarium oxysporum in Pichia pastoris. New Biotechnol 28:369–374

    Article  Google Scholar 

  • Nakamura S, Wakabayashi K, Nakai R, Aono R, Horikoshi K (1993) Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. Strain 41 M-1. Appl Environ Microb 59:2311–2316

    Google Scholar 

  • Onysko KA (1993) Biological bleaching of chemical pulps: a review. Biotechnol Adv 11:179–198

    Article  Google Scholar 

  • Pandey A (2002) Solid-state fermentation. Biochem Eng J 13:81–84

    Article  Google Scholar 

  • Panwar D, Srivastava PK, Kapoor M (2013) Production, extraction and characterization of alkaline xylanase from Bacillus sp. PKD-9 with potential for poultry feed. Biocatal Agric Biotechnol 3:118–125

    Google Scholar 

  • Pastor FIJ, Gallardo Ó,Sanz-Aparicio J, Díaz P (2007) Xylanases: molecular properties and applications. In: Polaina J, MacCabe AP (eds) Industrial enzymes. Springer, Dordrecht, The Netherlands, pp 65–82

    Google Scholar 

  • Pedersena MB, Dalsgaarda S, Arenta S, Lorentsena R, Knudsen KEB, Yua S, Lærke HN (2015) Xylanase and protease increase solubilization of non-starch polysaccharides and nutrient release of corn- and wheat distillers dried grains with solubles. Biochem Eng J 98:99–106

    Article  Google Scholar 

  • Phakachoed N, Lounglawan P, Suksombat W (2012) Effects of xylanase supplementation on ruminal digestibility in fistula tednon-lactating dairy cows fed rice straw. Livest Sci 149:104–108

    Article  Google Scholar 

  • Ping Y, Ling H-Z, Song G, Ge J-P (2013) Xylitol production from non-detoxified corncob hemicellulose acid hydrolysate by Candida tropicalis. Biochem Eng J 75:86–91

    Article  Google Scholar 

  • Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microb Biotechnol 67:577–591

    Article  Google Scholar 

  • Poutanen K (1997) Enzymes: an important tool in the improvement of the quality of cereal foods. Trends Food Sci Technol 8:300–306

    Article  Google Scholar 

  • Prade RA (1996) Xylanases: from biology to biotechnology. Biotechnol Genet Eng Rev 13:101–131

    Article  Google Scholar 

  • Pradeep GC, Choi YH, Choi YS, Seong CN, Cho SS, Lee HJ, Yoo JC (2013) A novel thermostable cellulase free xylanase stable in broad range of pH from Streptomyces sp. CS428. Process Biochem 48:1188–1196

    Article  Google Scholar 

  • Prasad DY (1993) Enzymatic deinking of laser and xerographic office wastes. Appita J 46:289–292

    Google Scholar 

  • Pribowo A, Arantes J, Saddler VN (2012) The adsorption and enzyme activity profiles of specific Trichoderma reesei cellulase/xylanase components when hydrolyzing steam pretreated corn stover. Enzyme Microb Technol 50:195–203

    Article  Google Scholar 

  • Puchart V, Biely P (2008) Simultaneous production of endo-beta-1,4-xylanase and branched xylooligosaccharides by Thermomyces lanuginosus. J Biotechnol 137:34–43

    Article  Google Scholar 

  • Purkarthofer H, Steiner W (1995) Induction of endo-P-xylanase in the fungus Thermomyces lanuginosus. Enzyme Microb Technol 17:114–118

    Article  Google Scholar 

  • Qi Si J, Drost-Lustenberger C (2002) Enzymes for bread, pasta and noodle products. In: Whitehurst RJ, Law BA (eds) Enzymes in food technology. Sheffield Academic Press, Sheffield, pp 19–56

    Google Scholar 

  • Qian C, Liu N, Yan X, Wang Q, Zhou Z, Wang Q (2015) Engineering a high-performance, metagenomic-derived novelxylanase with improved soluble protein yield and thermostability. Enzyme Microb Technol 70:35–41

    Article  Google Scholar 

  • Rantanen H, Virkki L, Tuomainen P, Kabel M, Schols H, Tenkanen M (2007) Preparation of arabinoxylobiose from rye xylan using family 10 Aspergillus aculeatus endo-1,4-beta-D-xylanase. Carbohydr Polym 68:350–359

    Article  Google Scholar 

  • Saake B, Clark T, Puls J (1995) Investigations on the reaction mechanism of xylanases and mannanases on sprucewood chemical pulps. Holzforschung 49:60–68

    Article  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  Google Scholar 

  • Saleem M, Tabassum MR, Yasmin R, Imran M (2009) Potential of xylanase from thermophilic Bacillus sp. XTR-10 in biobleaching of wood kraft pulp. Int Biodeterior Biodegrad 63:1119–1124

    Article  Google Scholar 

  • Saleh M, Cuevas M, García JF, Sánchez S (2014) Valorization of olive stones for xylitol and ethanol production from dilute acid pretreatment via enzymatic hydrolysis and fermentation by Pachysolen tannophilus. Biochem Eng J 90:286–293

    Article  Google Scholar 

  • Santos MG, Bozza FT, Thomazini M, Favaro-Trindade CS (2015) Microencapsulation of xylitol by double emulsion followed by complex coacervation. Food Chem 171:32–39

    Article  Google Scholar 

  • Schaedel C, Bloechl A, Richter A, Hoch G (2010) Quantification and monosaccharide composition of hemicelluloses from different plant functional types. Plant Physiol Biochem 48:1–8

    Article  Google Scholar 

  • Schulze E (1891) Information regarding chemical composition of plant cell membrane. Ber Dtsch Chem Ges 24:2277–2287

    Article  Google Scholar 

  • Shatalov AA, Pereira H (2007) Xylanase pre-treatment of giant reed organosolv pulps: direct bleaching effect and bleach boosting. Ind Crops Prod 25:248–256

    Article  Google Scholar 

  • Singh S, Madlala AM, Prior BA (2003) Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microb Rev 27:3–16

    Article  Google Scholar 

  • Sohpal VK, Dey A, Singh A (2010) Investigate of process parameters on xylanase enzyme activity in Melanocarpus albomyces batch culture. In: WCE 2010, London, UK

    Google Scholar 

  • Song L, Dumon C, Siguier B, André I, Eneyskaya E, Kulminskaya A, Bozonnet S, O’Donohue MJ (2014) Impact of an N-terminal extension on the stability and activity of theGH11 xylanase from Thermobacillus xylanilyticus. J Biotechnol 174:64–72

    Article  Google Scholar 

  • Sonia KG, Chadha BS, Saini HS (2005) Sorghum straw for xylanase hyper-production by Thermomyces lanuginosus (D2W3) under solid-state fermentation. Bioresour Technol 96:1561–1569

    Article  Google Scholar 

  • Srinivasan MD, Rele MV (1999) Microbial xylanases for paper industry. Curr Sci 77:137–142

    Google Scholar 

  • Stephens DE, Rumbold K, Permaul K, Prior BA, Singh S (2007) Directed evolution of the thermostable xylanase from Thermomyces lanuginosus. J Biotechnol 127:348–354

    Article  Google Scholar 

  • Stephens DE, Khan FI, Singh P, Bisetty K, Singh S, Permaul K (2014) Creation of thermostable and alkaline stable xylanase variants by DNA shuffling. J Biotechnol 187:139–146

    Article  Google Scholar 

  • Subramaniyan S, Prema P (2000) Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol Lett 183:1–7

    Article  Google Scholar 

  • Suurnakki A, Heijnesson A, Buchert J, Westermark U, Viikari L (1996) Effect of pulp surfaces on enzyme-aided bleaching on kraft pulps. J Pulp Pap Sci 22:591–596

    Google Scholar 

  • Takahashi Y, Kawabata H, Murakami S (2013) Analysis of functional xylanases in xylan degradation by Aspergillus niger E-1 and characterization of the GH family 10 xylanase XynVII. SpringerPlus 2:447

    Article  Google Scholar 

  • Törrönen A, Rouvinen J (1997) Structural and functional properties of low molecular weight endo-1,4-β-xylanases. J Biotechnol 57:137–149

    Article  Google Scholar 

  • Trevizano LM, Ventorim RZ, de Rezende ST, Junior FPS, Guimaraes VM (2012) Thermostability improvement of Orpinomyces sp. xylanase by directed evolution. J Mol Catal B Enzym 81:12–18

    Article  Google Scholar 

  • Turunen O, Etuaho K, Fenel F, Vehmaanpera J, Wu X, Rouvinen J, Leisola M (2001) A combination of weakly stabilizing mutations with a disulfide bridge in the alpha-helix region of Trichoderma reesei endo-1,4-beta-xylanase II increases the thermal stability through synergism. J Biotechnol 88:37–46

    Article  Google Scholar 

  • van Dyk JS, Sakka M, Sakka K, Pletschke BI (2010) Characterisation of the multi-enzyme complex xylanase activity from Bacillus licheniformis SVD1. Enzyme Microb Technol 47:174–177

    Article  Google Scholar 

  • Vardakou M, Flint J, Christakopoulos P, Lewis RJ, Gilbert HJ, Murray JW (2005) A Family 10 Thermoascus aurantiacus xylanase utilizes arabinose decorations of xylan as significant substrate specificity determinants. J Mol Biol 352:1060–1067

    Article  Google Scholar 

  • Várnai A, Huikko L, Pere J, Siika-aho M, Viikari L (2011) Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood. Bioresour Technol 102:9096–9104

    Article  Google Scholar 

  • Verma D, Satyanarayana T (2012) Cloning, expression and applicability of thermo-alkali-stable xylanase of Geobacillus thermoleovorans in generating xylooligosaccharides from agro-residues. Bioresour Technol 107:333–338

    Article  Google Scholar 

  • Vieira DS, Degrève L, Ward RJ (2009) Characterization of temperature dependent and substrate-binding cleft movements in Bacillus circulans family 11 xylanase: a molecular dynamics investigation. Biochim Biophys Acta 1790:1301–1306

    Article  Google Scholar 

  • Viikari L, Ranva M, Kantelinen A, Sandquist J, Linko M (1986) Bleaching with enzymes. In: Third international conference in biotechnology in pulp and paper industry, Stockholm, pp 67–69

    Google Scholar 

  • Wakiyama M, Tanaka H, Yoshihara K, Hayashi S, Ohta K (2008) Purification and properties of family-10 endo-1,4-β-xylanase from Penicillium citrinum and structural organization of encoding gene. J Biosci Bioeng 105:367–374

    Article  Google Scholar 

  • Wang J, Sun BG, Cao YP, Tian Y, Wang CT (2009) Enzymatic preparation of wheat bran xylooligosaccharides and their stability during pasteurization and autoclave sterilization at low pH. Carbohydr Polym 77:816–821

    Article  Google Scholar 

  • Wase DAJ, Raymahasay S, Wang CW (1985) Production of/ -D-glucosidase, endo- 1,4-/ -D-glucanase and D-xylanase from straw by Aspergillus fumigatus IMI 255091. Enzyme Microb Technol 7:225–229

    Google Scholar 

  • Wong KKY, Tan LUL, Saddler JN (1988) Multiplicity of β-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev 52:305–317

    Google Scholar 

  • Xue Y, Peng J, Wang R, Song X (2009) Construction of the trifunctional enzyme associating the Thermoanaerobacter ethanolicus xylosidase-arabinosidase with the Thermomyces lanuginosus xylanase for degradation of arabinoxylan. Enzyme Microb Technol 45:22–27

    Article  Google Scholar 

  • Yang H, Wang K, Song X, Xu F (2011) Production of xylooligosaccharides by xylanase from Pichia stipitis based on xylan preparation from triploid Populas tomentosa. Bioresour Technol 102:7171–7176

    Article  Google Scholar 

  • Yang Q, Gao Y, Huang Y, Xu Q, Luo X-M, Liu J-L, Feng J-X (2015) Identification of three important amino acid residues of xylanaseAfxynA from Aspergillus fumigatus for enzyme activity and formation of xylobiose as the major product. Process Biochem 50:571–581

    Google Scholar 

  • Yin Y, Chen H, Hahn MG, Mohnen D, Xu Y (2010) Evolution and function of the plant cell wall synthesis-related glycosyltransferase family 81. Plant Physiol 153:1729–1746

    Article  Google Scholar 

  • Zhang S, Zhang K, Chen X, Chu X, Sun F, Dong Z (2010) Five mutations in N-terminus confer thermostability on mesophilic xylanase. Biochem Biophys Res Commun 395:200–206

    Article  Google Scholar 

  • Zhang J, Zhang B, Wanga D, Gao X, Hong J (2015) Improving xylitol production at elevated temperature with engineered Kluyveromyces marxianus through over-expressing transporters. Bioresour Technol 175:642–645

    Article  Google Scholar 

  • Zhao L-C, Wang Y, Lin J-F, Guo L-Q (2012) Adsorption and kinetic behavior of recombinant multifunctional xylanase in hydrolysis of pineapple stem and bagasse and their hemicellulose for Xylo-oligosaccharide production. Bioresour Technol 110:343–348

    Article  Google Scholar 

  • Zheng H, Liu Y, Liu X, Han Y, Wang J, Lu F (2012) Overexpression of a Paenibacillus campinasensis xylanase in Bacillus megaterium and its applications to biobleaching of cotton stalk pulp and saccharification of recycled paper sludge. Bioresour Technol 125:182–187

    Article  Google Scholar 

  • Zhengqiang J, Kobayash A, Ahsan MM, Lite L, Kitaoka M, Hayashi K (2001) Characterization of a thermostable family 10 endo-xylanase (XynB) from Thermotoga maritima that cleaves p-nitrophenyl-P-D-xyloside. J Biosci D Bioeng 92:423–428

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks Prof. V.K. Gupta for the invitation to write this chapter. The previous work in the field was supported by the Coordination for the Improvement of Higher Level Personnel (CAPES) and São Paulo Research Foundation (FAPESP), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Gomes Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rodrigues, A.G. (2016). Endo-β-1,4-xylanase: An Overview of Recent Developments. In: Gupta, V. (eds) Microbial Enzymes in Bioconversions of Biomass. Biofuel and Biorefinery Technologies, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-43679-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43679-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43677-7

  • Online ISBN: 978-3-319-43679-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics