The Model-Based Disturbance Rejection with MOMI Tuning Method for PID Controllers

  • Damir VrančićEmail author
  • Paulo Moura Oliveira
  • Jan Cvejn
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 402)


The paper presents a tuning method for PID controllers which substantially improves closed-loop disturbance rejection performance while keeping the tracking performance. The tuning method is based on the internal disturbance compensator which parameters are calculated according to the Magnitude Optimum criterion. The results of experiments show that the proposed model-based approach gives superior disturbance-rejection response and lower controller activity when compared to Disturbance Rejection Magnitude Optimum tuning method.



This work was supported in part by the Slovenian Research Agency through the programme P2-0001 and Grant L2-5476 and by EU’s Seventh Framework Programme under grant agreement n°[621208].


  1. 1.
    Åström, K.J., Hägglund, T.: PID controllers: Theory, Design, and Tuning, 2nd edn. Instrument Society of America (1995)Google Scholar
  2. 2.
    Åström, K.J., Panagopoulos, H., Hägglund, T.: Design of PI controllers based on non-convex optimization. Automatica 34(5), 585–601 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Freire, H., Moura, O.P., Solteiro, E.P., Bessa, M.: Many-Objective PSO PID Controller Tuning, Controlo 2014, pp. 183–192. Porto, Portugal (2014)Google Scholar
  4. 4.
    Garcia, C.E., Morari, M.: Internal model control. A unifying review and some new results. Ind. Eng. Chem. Process Des. Dev. 21, 308–323 (1982)CrossRefGoogle Scholar
  5. 5.
    Garcia, C.E., Morari, M.: Internal model control. 2. Design procedure for multivariable systems. Ind. Eng. Chem. Process Des. Dev. 24, 472–484 (1985)CrossRefGoogle Scholar
  6. 6.
    Garcia, C.E., Morari, M.: Internal model control. 3. Multivariable control law computation and tuning guidelines. Ind. Eng. Chem. Process Des. Dev. 24, 484–494 (1985)CrossRefGoogle Scholar
  7. 7.
    Gorez, R.: A survey of PID auto-tuning methods. J. A 38(1), 3–10 (1997)Google Scholar
  8. 8.
    Huba, M.: Constrained pole assignment control. In: Menini, L., Zaccarian, L., Abdallah, Ch. T., (eds.) Current Trends in Nonlinear Systems and Control, pp. 163–183. Birkhäuser, Boston (2006)Google Scholar
  9. 9.
    Moura, O.P., Vrančić, D., Freire, H.: Dual Mode Feedforward-Feedback Control System, Controlo 2014, pp. 241–250. Porto, Portugal (2014)Google Scholar
  10. 10.
    O’Dwyer, A.: Handbook of PI and PID Controller Tuning Rules; 3rd edn. Imperial College Press (2009)Google Scholar
  11. 11.
    Taguchi, H., Araki, M.: Two-degree-of-freedom PID controllers—their functions and optimal tuning. In: Proceedings of the IFAC Workshop on Digital Control (PID’00), pp. 95–100. Terrassa (2000)Google Scholar
  12. 12.
    Vrančić, D: Magnitude optimum techniques for PID controllers. In: Rames R.C. (eds.). Introduction to PID Controllers: Theory, Tuning and Application to Frontiers Areas. pp. 75–102. InTech, cop., Rijeka (2011)Google Scholar
  13. 13.
    Vrančić D., Strmčnik S., Hanus R.: Magnitude optimum tuning using non-parametric data in the frequency domain. In: PID’00: Preprints: IFAC Workshop on Digital Control: Past, Present and Future of PID Control, pp. 438–443. Terrassa, Spain, 5–7 April 2000Google Scholar
  14. 14.
    Vrančić, D., Strmčnik, S., Juričić, Đ.: A magnitude optimum multiple integration method for filtered PID controller. Automatica 37, 1473–1479 (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Vrančić D., Kocijan J., Strmčnik S.: Simplified disturbance rejection tuning method for PID controllers. In: ASCC the 5th Asian Control Conference, July 20–23, Melbourne, Australia. Conference Proceedings (2004)Google Scholar
  16. 16.
    Vrančić D. Strmčnik S., Kocijan J. and Moura Oliveira P. B. de. (2010). Improving disturbance rejection of PID controllers by means of the magnitude optimum method. ISA Trans. 49(1), 47–56. ISSN 0019-0578Google Scholar
  17. 17.
    Vrečko, D., Vrančić, D., Juričić, Đ., Strmčnik, S.: A new modified smith predictor: the concept, design and tuning. ISA Trans. 40, 111–121 (2001). ISSN 0019-0578Google Scholar
  18. 18.
    Whiteley, A.L.: Theory of servo systems, with particular reference to stabilization. J. IEE, Part II 93(34), 353–372 (1946)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Damir Vrančić
    • 1
    Email author
  • Paulo Moura Oliveira
    • 2
  • Jan Cvejn
    • 3
  1. 1.Department of Systems and ControlJ. Stefan InstituteLjubljanaSlovenia
  2. 2.Department of Engineering, School of Sciences and TechnologyUniversidade de Trás-os-Montes e Alto Douro, UTADVila RealPortugal
  3. 3.Faculty of Electrical Engineering and InformaticsUniversity of PardubicePardubiceCzech Republic

Personalised recommendations