Quadruple Real Dominant Pole Tuning of a Filtered PID Controller

  • Mikuláš HubaEmail author
  • Pavol Bisták
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 402)


This paper proposes an integrated tuning of a two degree of freedom (2DOF) PID controller extended by an nth order binomial low pass filter for first order plant with dead time. The task is motivated by enabling an flexible achievement of a required measurement noise attenuation. By comparing two modifications of a quadruple real dominant pole tuning derived for two elementary situations it proposes a simplified tuning modification that may be easily applied to a general situation.


PID control Filtration Noise attenuation 



This work has been partially supported by the grants APVV-0343-12 Computer aided robust nonlinear control design and VEGA 1/0937/14 Advanced methods for nonlinear modeling and control of mechatronic systems.


  1. 1.
    Isaksson, A., Graebe, S.: Derivative filter is an integral part of pid design. Control Theory Appl. IEE Proc. 149(1), 41–45 (2002)CrossRefGoogle Scholar
  2. 2.
    Hägglund, T.: Signal filtering in PID control. In: IFAC Conference on Advances in PID Control PID’12, vol. 2, Part 1 (2012)Google Scholar
  3. 3.
    Larsson, P., Hägglund, T.: Comparison between robust PID and predictive PI controllers with constrained control signal noise sensitivity. In: IFAC Conference on Advances in PID Control PID’12, vol. 2, Part 1, pp. 175–180 (2012)Google Scholar
  4. 4.
    Segovia, V.R., Hägglund, T., Aström, K.: Measurement noise filtering for PID controllers. J. Process Control 24(4), 299–313 (2014)CrossRefGoogle Scholar
  5. 5.
    Huba, M.: Filter Choice for an Effective Measurement Noise Attenuation in PI and PID Controllers, in ICM2015. Nagoya, Japan (2015)Google Scholar
  6. 6.
    Huba, M.: Triple real dominant pole tuning of a filtered PI controller. In: 28th International Conference on Cybernetics and Informatics, Levoca, Slovakia (2016)Google Scholar
  7. 7.
    Oldenbourg, R., Sartorius, H.: Dynamik selbsttätiger Regelungen, 2nd edn, p. 1951. R. Oldenbourg-Verlag, München (1944)zbMATHGoogle Scholar
  8. 8.
    Vítečková, M., Víteček, A.: Two-degree of freedom controller tuning for integral plus time delay plants, ICIC Express Letters. Int. J. Res. Surv., Jpn. 2(3), 229–255 (2008)Google Scholar
  9. 9.
    Vítečková, M., Víteček, A.: 2DOF PI and PID controllers tuning. In: 9th IFAC Workshop on Time Delay Systems, vol. 9, Praha, pp. 343–348 (2010)Google Scholar
  10. 10.
    Rivera, D.E., Morari, M., Skogestad, S.: Internal model control. 4. pid controller design. Ind Eng. Chem. Res. 25(1), 252–265 (1986)Google Scholar
  11. 11.
    Huba, M.: Performance measures, performance limits and optimal PI control for the IPDT plant. J. Process Control 23(4), 500–515 (2013)CrossRefGoogle Scholar
  12. 12.
    Huba, M.: Comparing 2DOF PI and predictive disturbance observer based filtered PI control. J. Process Control 23(10), 1379–1400 (2013)CrossRefGoogle Scholar
  13. 13.
    Skogestad, S.: Simple analytic rules for model reduction and PID controller tuning. J. Process Control 13, 291–309 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Slovak University of Technology in BratislavaBratislavaSlovakia

Personalised recommendations