Advertisement

Disturbance Rejection Improvement for the Sliding Mode Smith Predictor Based on Bio-inspired Tuning

  • Josenalde OliveiraEmail author
  • José Boaventura-Cunha
  • Paulo Moura Oliveira
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 402)

Abstract

This paper addresses a strategy to improve disturbance rejection for the Sliding Mode Controller designed in a Smith Predictor scheme (SMC-SP), with its parameters tuned through the bio-inspired search algorithm—Particle Swarm Optimization (PSO). Conventional SMC-SP is commonly based on tuning equations derived from step response identification, when First Order Plus Dead Time models (FOPDT) are considered and therefore controller parameters are previously set. Online PSO tuning based on minimization of the Integral of Time Absolute Error (ITAE) can provide faster recovery from external disturbances without significant increase of energy consumption, and the Sliding Mode feature deals with possible model mismatch. Simulation results for time delayed systems corroborating these benefits are presented.

Keywords

Smith predictor Sliding modes Disturbance rejection Time delay systems Particle swarm optimization 

References

  1. 1.
    Smith, O.J.: A controller to overcome dead time. ISA J. 6, 28–33 (1959)Google Scholar
  2. 2.
    Smith, C.A., Corripio, A.B.: Principles and Practice of Automatic Process Control, 2nd edn. Wiley (1997)Google Scholar
  3. 3.
    Camacho, O.: Sliding Mode Control in Process Industry. In: Instrument Engineer’s Handbook, vol. 2, 4th edn. Bela G. Liptak (2005)Google Scholar
  4. 4.
    Camacho, O., Smith, C., Moreno, W.: Development of an internal model sliding mode controller. Ind. Eng. Chem. Res. 42(3), 568–573 (2003)CrossRefGoogle Scholar
  5. 5.
    Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Berlim-Heidelberg (1992)CrossRefzbMATHGoogle Scholar
  6. 6.
    Yuanhao, S., Jingcheng, W., Yunfeng, Z.: Sliding mode predictive control of main steam pressure in coal-fired power plant boiler. Chin. J. Chem. Eng. 20, 1107–1112 (2012)CrossRefGoogle Scholar
  7. 7.
    Ingimundarson, A., Hagglund, T.: Robust tuning procedures of dead-time compensating controllers. Control Eng. Pract. 9(11), 1195–1208 (2001)CrossRefGoogle Scholar
  8. 8.
    Darby, M.L., Nikolaou, M.: MPC: current practice and challenges. Control Eng. Pract. 20(4), 328–342 (2012)CrossRefGoogle Scholar
  9. 9.
    Kaya, I.: IMC based automatic tuning method for PID controllers in a Smith predictor configuration. Comput. Chem. Eng. 28, 281–290 (2004)CrossRefGoogle Scholar
  10. 10.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  11. 11.
    Jabri, K., Dumur, D., Godoy, E., Mouchette, A., Bèle, B.: Particle swarm optimization based tuning of a modified smith predictor for mould level control in continuous casting. J. Process Control 21(2), 263–270 (2011)CrossRefGoogle Scholar
  12. 12.
    Kanthaswamy, G., Jerome, J.: Control of dead-time systems using derivative free particle swarm optimization. Int. J. Bio-inspired Comput. 3(2), 85–102 (2011)CrossRefGoogle Scholar
  13. 13.
    Oliveira, J., Boaventura-Cunha, J., Oliveira, P.B.M., Freire, H.: A swarm intelligence-based tuning method for the sliding mode generalized predictive control. ISA Trans. 53, 1501–1515 (2014)CrossRefGoogle Scholar
  14. 14.
    Camacho, O., Rojas, R., García, W.: Variable structure control applied to chemical processes with inverse response. ISA Trans. 39, 55–72 (1999)CrossRefGoogle Scholar
  15. 15.
    Tian, D.P.: Review of convergence analysis of particle Swarm optimization. Int. J. Grid Distrib. Comput. 6(6), 117–128 (2013)CrossRefGoogle Scholar
  16. 16.
    Reynoso\(-\)Meza, G., Blasco, X., Sanchis, J., Martinez, M.: Controller tuning using evolutionary multi-objective optimization: current trends and applications. Control Eng. Pract. 28(1), 58–73 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Josenalde Oliveira
    • 1
    • 2
    Email author
  • José Boaventura-Cunha
    • 1
    • 3
  • Paulo Moura Oliveira
    • 1
    • 3
  1. 1.INESC TEC—INESC Technology and SciencePortoPortugal
  2. 2.Agricultural School of Jundiaí—Federal University of Rio Grande Do Norte, UFRNMacaíbaBrazil
  3. 3.University of Trás-os-Montes E Alto DouroSchool of Sciences and TechnologyVila RealPortugal

Personalised recommendations