Advertisement

CONTROLO 2016 pp 449-458 | Cite as

Inside Pipe Inspection: A Review Considering the Locomotion Systems

  • Everson Brum Siqueira
  • Rodrigo Zelir Azzolin
  • Silvia Silva da Costa Botelho
  • Vinícius Menezes de OliveiraEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 402)

Abstract

It is possible to observe that the fast technological development in the fields of instrumentation, control and embedded systems are increasing the employment of robotic systems for the execution of a large variety of tasks, for example, oil exploration or load transportation. In this way, there are many situations where it is very reasonable to use automatized systems, with special attention to the inspection of pipelines in the oil industry. There is a large quantity of systems developed and in the literature it is possible to find several reviews about inspection robots considering specifics applications. However, none of those reviews presents the methodology to acquire defect’s position. The main objective of this paper is to review the technical literature, describing the differences between robots employed to internal pipe inspection considering some features as application, adaptability, locomotion, sensors inspection and odometers.

Keywords

Pipeline Inspection robot Odometer Locomotion systems 

References

  1. 1.
    Anthierens, C., Ciftci, A., Betemps, M.: Design of an electro pneumatic micro robot for in-pipe inspection. In: Proceedings of the IEEE International Symposium on Industrial Electronics, 1999. ISIE’99, vol. 2, pp. 968–972. IEEE (1999)Google Scholar
  2. 2.
    Borenstein, J., Borrell, A.: The omnitread ot-4 serpentine robot. In: IEEE International Conference on Robotics and Automation, 2008. ICRA 2008, pp. 1766–1767. IEEE (2008)Google Scholar
  3. 3.
    Choi, C.H., Jung, S.H., Kim, S.H.: Feeder pipe inspection robot using an inch-worm mechanism with pneumatic actuators. In: IEEE International Conference on Robotics and Biomimetics, 2004. ROBIO 2004, pp. 889–894. IEEE (2004)Google Scholar
  4. 4.
    Choi, H., Ryew, S.: Robotic system with active steering capability for internal inspection of urban gas pipelines. Mechatronics 12(5), 713–736 (2002)CrossRefGoogle Scholar
  5. 5.
    Debenest, P., Guarnieri, M., Hirose, S.: Pipetron series-robots for pipe inspection. In: 2014 3rd International Conference on Applied Robotics for the Power Industry (CARPI), pp. 1–6. IEEE (2014)Google Scholar
  6. 6.
    Fjerdingen, S., Liljebäck, P., Transeth, A., et al.: A snake-like robot for internal inspection of complex pipe structures (piko). In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. IROS 2009, pp. 5665–5671. IEEE (2009)Google Scholar
  7. 7.
    Hayashi, I., Iwatsuki, N., Iwashina, S.: The running characteristics of a screw-principle microrobot in a small bent pipe. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. MHS’95, pp. 225–228. IEEE (1995)Google Scholar
  8. 8.
    Hirose, S., Ohno, H., Mitsui, T., Suyama, K.: Design of in-pipe inspection vehicles for \(\varphi \)25, \(\varphi \)50, \(\varphi \)150 pipes. In: Proceedings. 1999 IEEE International Conference on Robotics and Automation, 1999, vol. 3, pp. 2309–2314. IEEE (1999)Google Scholar
  9. 9.
    Horodinca, M., Doroftei, I., Mignon, E., Preumont, A.: A simple architecture for in-pipe inspection robots. In: Proceedings International Colloquium Mobile, Autonomous Systems, pp. 61–64. Citeseer (2002)Google Scholar
  10. 10.
    Ismail, I.N., Anuar, A., Sahari, K.S.M., Baharuddin, M.Z., Fairuz, M., Saad, J., et al.: Development of in-pipe inspection robot: a review. In: 2012 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (STUDENT), pp. 310–315. IEEE (2012)Google Scholar
  11. 11.
    Kepplin, V., Scholl, K.U., Berns, K.: A mechatronic concept for a sewer inspection robot. In: Proceedings. 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 1999, pp. 724–729. IEEE (1999)Google Scholar
  12. 12.
    Kim, D.W., Park, C.H., Kim, H.K., Kim, S.B.: Force adjustment of an active pipe inspection robot. In: ICCAS-SICE, 2009, pp. 3792–3797. IEEE (2009)Google Scholar
  13. 13.
    Kim, J.H., Sharma, G., Iyengar, S.S.: Famper: A fully autonomous mobile robot for pipeline exploration. In: 2010 IEEE International Conference on Industrial Technology (ICIT), pp. 517–523. IEEE (2010)Google Scholar
  14. 14.
    Kostin, G.V., Chernousko, F.L., Bolotnik, N.N., Pfeiffer, F.: Regular motions of a tube-crawling robot: simulation and optimization. In: Proceedings of the First Workshop on Robot Motion and Control, 1999. RoMoCo’99, pp. 45–50. IEEE (1999)Google Scholar
  15. 15.
    Kwon, Y.S., Yi, B.J.: Design and motion planning of a two-module collaborative indoor pipeline inspection robot. IEEE Trans. Robot. 28(3), 681–696 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Li, P., Ma, S., Li, B., Wang, Y.: Design of a mobile mechanism possessing driving ability and detecting function for in-pipe inspection. In: IEEE International Conference on Robotics and Automation, 2008. ICRA 2008, pp. 3992–3997. IEEE (2008)Google Scholar
  17. 17.
    Liu, Z., Kleiner, Y.: State of the art review of inspection technologies for condition assessment of water pipes. Measurement 46(1), 1–15 (2013)CrossRefGoogle Scholar
  18. 18.
    Lu, C.P., Huang, H.P., Yan, J.L., Cheng, T.H.: Development of a pipe inspection robot. In: Industrial Electronics Society, 2007. IECON 2007. 33rd Annual Conference of the IEEE, pp. 626–631. IEEE (2007)Google Scholar
  19. 19.
    Mandal, K., Dufour, D., Atherton, D.: Use of magnetic barkhausen noise and magnetic flux leakage signals for analysis of defects in pipeline steel. IEEE Trans. Magn. 35(3), 2007–2017 (1999)CrossRefGoogle Scholar
  20. 20.
    Masuta, H., Watanabe, H., Sato, K., Lim, H.o.: Recognition of branch pipe for pipe inspection robot using fiber grating vision sensor. In: 2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 633–638. IEEE (2013)Google Scholar
  21. 21.
    Mirats Tur: J.M., Garthwaite, W.: Robotic devices for water main in-pipe inspection: a survey. J. Field Robot. 27(4), 491–508 (2010)Google Scholar
  22. 22.
    Nishikawa, H., Sasaya, T., Shibata, T., Kaneko, T., Mitumoto, N., Kawakita, S., Kawahara, N.: In-pipe wireless micro locomotive system. In: Proceedings of 1999 International Symposium on Micromechatronics and Human Science, 1999. MHS’99, pp. 141–147. IEEE (1999)Google Scholar
  23. 23.
    Okamoto, J., Adamowski, J.C., Tsuzuki, M.S., Buiochi, F., Camerini, C.S.: Autonomous system for oil pipelines inspection. Mechatronics 9(7), 731–743 (1999)CrossRefGoogle Scholar
  24. 24.
    Pfeiffer, F., Rossmann, T., Löffler, K.: Control of a tube crawling machine. In: Proceedings 2000 2nd International Conference on Control of Oscillations and Chaos, 2000, vol. 3, pp. 586–591. IEEE (2000)Google Scholar
  25. 25.
    Reber, K., Beller, M., Willems, H., Barbian, O.: A new generation of ultrasonic in-line inspection tools for detecting, sizing and locating metal loss and cracks in transmission pipelines. In: Ultrasonics Symposium, 2002. Proceedings 2002 IEEE. vol. 1, pp. 665–671. IEEE (2002)Google Scholar
  26. 26.
    Roh, S.G., Choi, H.R.: Differential-drive in-pipe robot for moving inside urban gas pipelines. IEEE Trans. Robot. 21(1), 1–17 (2005)Google Scholar
  27. 27.
    Rollinson, D., Choset, H.: Pipe network locomotion with a snake robot. J. Field Robot. (2014)Google Scholar
  28. 28.
    Ruggiu, M., et al.: In-pipe inch-worm pneumatic flexible robot. In: Proceedings 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2001, vol. 2, pp. 1226–1231. IEEE (2001)Google Scholar
  29. 29.
    Schempf, H., Mutschler, E., Goltsberg, V., Skoptsov, G., Gavaert, A., Vradis, G.: Explorer: Untethered real-time gas main assessment robot system. In: Proceedings of International Workshop on Advances in Service Robotics, ASER, vol. 3 (2003)Google Scholar
  30. 30.
    Schoeneich, P., Rochat, F., Nguyen, O.T.D., Caprari, G., Moser, R., Bleuler, H., Mondada, F.: Tubulo-a train-like miniature inspection climbing robot for ferromagnetic tubes. In: Proceedings of the 1st International Conference on Applied Robotics for the Power Industry. pp. 1–5. No. EPFL-CONF-149354, IEEE Press (2010)Google Scholar
  31. 31.
    Schoeneich, P., Rochat, F., Nguyen, O.T.D., Moser, R., Mondada, F.: Tripillar: a miniature magnetic caterpillar climbing robot with plane transition ability. Robotica 29(07), 1075–1081 (2011)CrossRefGoogle Scholar
  32. 32.
    Scholl, K.U., Kepplin, V., Berns, K., Dillmann, R.: Controlling a multi-joint robot for autonomous sewer inspection. In: Proceedings. ICRA’00. IEEE International Conference on Robotics and Automation, 2000, vol. 2, pp. 1701–1706. IEEE (2000)Google Scholar
  33. 33.
    Shao, L., Wang, Y., Guo, B., Chen, X.: A review over state of the art of in-pipe robot. In: 2015 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 2180–2185. IEEE (2015)Google Scholar
  34. 34.
    Shukla, A., Karki, H.: A review of robotics in onshore oil-gas industry. In: 2013 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 1153–1160. IEEE (2013)Google Scholar
  35. 35.
    Suzumori, K., Wakimoto, S., Takata, M.: A miniature inspection robot negotiating pipes of widely varying diameter. In: 2003. Proceedings ICRA’03. IEEE International Conference on Robotics and Automation, vol. 2, pp. 2735–2740. IEEE (2003)Google Scholar
  36. 36.
    Tâche, F., Fischer, W., Caprari, G., Siegwart, R., Moser, R., Mondada, F.: Magnebike: a magnetic wheeled robot with high mobility for inspecting complex-shaped structures. J. Field Robot. 26(5), 453–476 (2009)CrossRefGoogle Scholar
  37. 37.
    Tâche, F., Pomerleau, F., Fischer, W., Caprari, G., Mondada, F., Moser, R., Siegwart, R.: Magnebike: compact magnetic wheeled robot for power plant inspection. In: 2010 1st International Conference on Applied Robotics for the Power Industry (CARPI), pp. 1–2. IEEE (2010)Google Scholar
  38. 38.
    Tianlu, C., Peiwen, Q., Tao, J., Zhigang, Z.: Designing and signal processing of intelligent inspection pig applying ultrasonic a-scan. In: Ultrasonics Symposium, 2005 IEEE. vol. 3, pp. 1484–1487. IEEE (2005)Google Scholar
  39. 39.
    Tsuruta, K., Sasaya, T., Shibata, T., Kawahara, N.: Control circuit in an in-pipe wireless micro inspection robot. In: Proceedings of 2000 International Symposium on Micromechatronics and Human Science, 2000. MHS 2000, pp. 59–64. IEEE (2000)Google Scholar
  40. 40.
    Walter, C., Saenz, J., Elkmann, N., Althoff, H., Kutzner, S., Stuerze, T.: Design considerations of robotic system for cleaning and inspection of large-diameter sewers. J. Field Robot. 29(1), 186–214 (2012)CrossRefGoogle Scholar
  41. 41.
    Wang, Z., Cao, Q., Luan, N., Zhang, L.: Development of new pipeline maintenance system for repairing early-built offshore oil pipelines. In: IEEE International Conference on Industrial Technology, 2008. ICIT 2008, pp. 1–6. IEEE (2008)Google Scholar
  42. 42.
    Wang, Z., Cao, Q., Luan, N., Zhang, L.: Development of an autonomous in-pipe robot for offshore pipeline maintenance. Ind. Robot Int. J. 37(2), 177–184 (2010)CrossRefGoogle Scholar
  43. 43.
    Yoon, K.H., Park, Y.W.: Pipe inspection robot actuated by using compressed air. In: 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1345–1349. IEEE (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Everson Brum Siqueira
    • 1
  • Rodrigo Zelir Azzolin
    • 1
  • Silvia Silva da Costa Botelho
    • 1
  • Vinícius Menezes de Oliveira
    • 1
    Email author
  1. 1.Center for Computational Sciences – C3Federal University of Rio Grande – FURGRio GrandeBrazil

Personalised recommendations