Advertisement

MDP Periodically Time-Varying Convolutional Codes

  • Ricardo PereiraEmail author
  • Paula Rocha
  • Diego Napp
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 402)

Abstract

In this paper we use some classical ideas from linear systems theory to analyse convolutional codes. In particular, we exploit input-state-output representations of periodic linear systems to study periodically time-varying convolutional codes. In this preliminary work we focus on the column distance of these codes and derive explicit necessary and sufficient conditions for an (n, 2, 1) periodically time-varying convolutional code to have Maximum Distance Profile (MDP).

Keywords

Convolutional codes Periodically codes MDP codes 

Notes

Acknowledgments

This work was supported in part by the Portuguese Foundation for Science and Technology (FCT—Fundação para a Ciência e a Tecnologia), through CIDMA—Center for Research and Development in Mathematics and Applications, within project UID/MAT/04106/2013.

This work was financially supported by: Project POCI-01-0145-FEDER-006933—SYSTEC—Research Center for Systems and Technologies—funded by FEDER funds through COMPETE2020—Programa Operational Competitividade e Internacionalização (POCI)—and by national funds through FCT—Fundação para a Ciência e a Tecnologia.

References

  1. 1.
    Johannesson, R., Zigangirov, K.S.: Fundamentals of Convolutional Coding. IEEE press, New York (1999)CrossRefzbMATHGoogle Scholar
  2. 2.
    Rosenthal, J.: Connections between linear systems and convolutional codes. In: Marcus B., Rosenthal, J. (eds.) Codes, Systems, and Graphical Models, vol. 123, pp. 39–66. Springer, New York (2001)Google Scholar
  3. 3.
    Viterbi, A.J.: Convolutional codes and their performance in communication systems. IEEE Trans. Commun. Technol. 19(5), 751–772 (1971)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Almeida, P., Napp, D., Pinto, R.: A new class of superregular matrices and MDP convolutional codes. Linear Algebra Appl. 439(7), 2145–2147 (2013)Google Scholar
  5. 5.
    Gluesing-Luerssen, H., Rosenthal, J., Smarandache, R.: Strongly-MDS convolutional codes. IEEE Trans. Inf. Theory 52(2), 584–598 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Climent, J.-J., Herranz, V., Perea C., Tomás, V.: A systems theory approach to periodically time-varying convolutional codes by means of their invariant equivalent. In: Bras-Amorós, M., Høholdt, T. (eds.) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, vol. 5527, pp. 73–82. Springer, Heidelberg (2009)Google Scholar
  7. 7.
    Hu, Q., Perez, L.C.: Some periodic time-varying convolutional codes with free distance achieving the Heller bound. In: Proceedings of the IEEE International Symposium on Information Theory, p. 247 (2001)Google Scholar
  8. 8.
    Lee, P.J.: There are many good periodically time-varying convolutional codes. IEEE Trans. Inf. Theory 35(2), 460–463 (1989)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mooser, M.: Some periodic convolutional codes better than any fixed code. IEEE Trans. Inf. Theory 29(5), 750–751 (1983)CrossRefzbMATHGoogle Scholar
  10. 10.
    Rosenthal, J., Schumacher, J.M., York, E.V.: On behaviors and convolutional codes. IEEE Trans. Inf. Theory 42(6), 1981–1991 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hutchinson, R., Rosenthal, J., Smarandache, R.: Convolutional codes with maximum distance profile. Syst. Control Lett. 54(1), 53–63 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rosenthal, J., Smarandache, R.: Maximum distance separable convolutional codes. Appl. Algebra Eng. Commun. Comput. 10, 15–32 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Tomás, V.: Complete-MDP convolutional codes over the erasure channel. PhD Thesis, University of Alicante (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.CIDMA—Center for Research and Development in Mathematics and Applications, Department of MathematicsUniversity of AveiroAveiroPortugal
  2. 2.SYSTEC, Faculty of EngineeringUniversity of PortoPortoPortugal

Personalised recommendations