Turing’s Theory of Morphogenesis: Where We Started, Where We Are and Where We Want to Go

Part of the Theory and Applications of Computability book series (THEOAPPLCOM)


Over 60 years have passed since Alan Turing first postulated a mechanism for biological pattern formation. Although Turing did not have the chance to extend his theories before his unfortunate death two years later, his work has not gone unnoticed. Indeed, many researchers have since taken up the gauntlet and extended his revolutionary and counter-intuitive ideas. Here, we reproduce the basics of his theory as well as review some of the recent generalisations and applications that have led our mathematical models to be closer representations of the biology than ever before. Finally, we take a look to the future and discuss open questions that not only show that there is still much life in the theory, but also that the best may be yet to come.


Domain Growth Turing Pattern Stochastic Simulation Algorithm Turing Instability Homogeneous Steady State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



TEW would like to thank St John’s College Oxford for its financial support. This publication is based on work supported by Award No. KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST). The cheetah and lemur photos were used under the Attribution-ShareAlike 2.0 license and were downloaded from and


  1. 1.
    C.J. Tomlin, J.D. Axelrod, Biology by numbers: mathematical modelling in developmental biology. Nat. Rev. Genet. 8 (5), 331–340 (2007)CrossRefGoogle Scholar
  2. 2.
    L. Wolpert, Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25 (1), 1–47 (1969)CrossRefGoogle Scholar
  3. 3.
    L. Wolpert, Positional information revisited. Development 107 (Suppl.), 3–12 (1989)Google Scholar
  4. 4.
    A.M. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952)MathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Gierer, H. Meinhardt, A theory of biological pattern formation. Biol. Cybern. 12 (1), 30–39 (1972)zbMATHGoogle Scholar
  6. 6.
    R. Kapral, K. Showalter, Chemical Waves and Patterns (Kluwer, Dordrecht, 1995)CrossRefGoogle Scholar
  7. 7.
    P. Borckmans, G. Dewell, A. De wit, D. Walgraef, Turing bifurcations and pattern selection, in Chemical Waves and Patterns, Chap. 10 (Kluwer, Dordrecht, 1995), pp. 325–363Google Scholar
  8. 8.
    Y.I. Balkarei, A.V. Grigor’yants, Y.A. Rzhanov, M.I. Elinson, Regenerative oscillations, spatial-temporal single pulses and static inhomogeneous structures in optically bistable semiconductors. Opt. Commun. 66 (2–3), 161–166 (1988)CrossRefGoogle Scholar
  9. 9.
    D.B. White, The planforms and onset of convection with a temperature-dependent viscosity. J. Fluid Mech. 191 (1), 247–286 (1988)CrossRefGoogle Scholar
  10. 10.
    T. Nozakura, S. Ikeuchi, Formation of dissipative structures in galaxies. Astrophys. J. 279, 40–52 (1984)CrossRefGoogle Scholar
  11. 11.
    B. Futcher, G.I. Latter, P. Monardo, C.S. McLaughlin, J.I. Garrels, A sampling of the yeast proteome. Mol. Cell. Biol. 19 (11), 7357 (1999)Google Scholar
  12. 12.
    N.G. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd edn. (North Holland, Amsterdam, 2007)zbMATHGoogle Scholar
  13. 13.
    S. Cornell, M. Droz, B. Chopard, Role of fluctuations for inhomogeneous reaction-diffusion phenomena. Phys. Rev. A 44, 4826–4832 (1991)CrossRefGoogle Scholar
  14. 14.
    A. Fick, On liquid diffusion. Philos. Mag. J. Sci. 10 (1), 31–39 (1855)MathSciNetGoogle Scholar
  15. 15.
    J.D. Murray, E.A. Stanley, D.L. Brown, On the spatial spread of rabies among foxes. Proc. R. Soc. Lond. B. Biol. 229 (1255), 111–150 (1986)CrossRefGoogle Scholar
  16. 16.
    A. Okubo, P.K. Maini, M.H. Williamson, J.D. Murray, On the spatial spread of the grey squirrel in Britain. Proc. R. Soc. Lond. B. Biol. 238 (1291), 113 (1989)Google Scholar
  17. 17.
    T.E. Woolley, R.E. Baker, E.A. Gaffney, P.K. Maini, How long can we survive? in Mathematical Modelling of Zombies, Chap. 6 (University of Ottawa Press, Ottawa, 2014)Google Scholar
  18. 18.
    J.D. Murray, Mathematical Biology I: An Introduction, vol. 1, 3rd edn. (Springer, Heidelberg, 2003)Google Scholar
  19. 19.
    R. Erban, S.J. Chapman, Reactive boundary conditions for stochastic simulations of reaction–diffusion processes. Phys. Biol. 4, 16 (2007)CrossRefGoogle Scholar
  20. 20.
    T.E. Woolley, R.E. Baker, P.K. Maini, J.L. Aragón, R.A. Barrio, Analysis of stationary droplets in a generic Turing reaction-diffusion system. Phys. Rev. E 82 (5), 051929 (2010)Google Scholar
  21. 21.
    T.E. Woolley, Spatiotemporal behaviour of stochastic and continuum models for biological signalling on stationary and growing domains. Ph.D. thesis, University of Oxford, 2011Google Scholar
  22. 22.
    R.A. Barrio, R.E. Baker, B. Vaughan Jr, K. Tribuzy, M.R. de Carvalho, R. Bassanezi, P.K. Maini, Modeling the skin pattern of fishes. Phys. Rev. E 79 (3), 31908 (2009)Google Scholar
  23. 23.
    R. Dillon, P.K. Maini, H.G. Othmer, Pattern formation in generalized Turing systems. J. Math. Biol. 32 (4), 345–393 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    J.C.B. Petersen, An identification system for zebra (Equus burchelli, Gray). Afr. J. Ecol. 10 (1), 59–63 (1972)CrossRefGoogle Scholar
  25. 25.
    P.K. Maini, T.E. Woolley, R.E. Baker, E.A. Gaffney, S.S. Lee, Turing’s model for biological pattern formation and the robustness problem. Interface Focus 2 (4), 487–496 (2012)CrossRefGoogle Scholar
  26. 26.
    T.E. Woolley, Mighty morphogenesis, in 50 Visions of Mathematics, Chap. 48 (Oxford University Press, Oxford, 2014)Google Scholar
  27. 27.
    H. Meinhardt, P. Prusinkiewicz, D.R. Fowler, The Algorithmic Beauty of Sea Shells (Springer, Heidelberg, 2003)CrossRefGoogle Scholar
  28. 28.
    S. Kondo, R. Asai, A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376, 765–768 (1995)CrossRefGoogle Scholar
  29. 29.
    S.W. Cho, S. Kwak, T.E. Woolley, M.J. Lee, E.J. Kim, R.E. Baker, H.J. Kim, J.S. Shin, C. Tickle, P.K. Maini, H.S. Jung, Interactions between Shh, Sostdc1 and Wnt signaling and a new feedback loop for spatial patterning of the teeth. Development 138, 1807–1816 (2011)CrossRefGoogle Scholar
  30. 30.
    R. Sheth, L. Marcon, M.F. Bastida, M. Junco, L. Quintana, R. Dahn, M. Kmita, J. Sharpe, M.A. Ros, How genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 338 (6113), 1476–1480 (2012)CrossRefGoogle Scholar
  31. 31.
    P. Arcuri, J.D. Murray, Pattern sensitivity to boundary and initial conditions in reaction-diffusion models. J. Math. Biol. 24 (2), 141–165 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    E.J. Crampin, E.A. Gaffney, P.K. Maini, Reaction and diffusion on growing domains: scenarios for robust pattern formation. Bull. Math. Biol. 61 (6), 1093–1120 (1999)CrossRefzbMATHGoogle Scholar
  33. 33.
    T.E. Woolley, R.E. Baker, E.A. Gaffney, P.K. Maini, Power spectra methods for a stochastic description of diffusion on deterministically growing domains. Phys. Rev. E 84 (2), 021915 (2011)Google Scholar
  34. 34.
    T.E. Woolley, R.E. Baker, E.A. Gaffney, P.K. Maini, Influence of stochastic domain growth on pattern nucleation for diffusive systems with internal noise. Phys. Rev. E 84 (4), 041905 (2011)Google Scholar
  35. 35.
    T.E. Woolley, R.E. Baker, E.A. Gaffney, P.K. Maini, Stochastic reaction and diffusion on growing domains: understanding the breakdown of robust pattern formation. Phys. Rev. E 84 (4), 046216 (2011)Google Scholar
  36. 36.
    J.L. Aragón, R.A. Barrio, T.E. Woolley, R.E. Baker, P.K. Maini, Nonlinear effects on Turing patterns: time oscillations and chaos. Phys. Rev. E 86 (2), 026201 (2012)Google Scholar
  37. 37.
    C.N. Tennyson, H.J. Klamut, R.G. Worton, The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat. Genet. 9 (2), 184–190 (1995)CrossRefGoogle Scholar
  38. 38.
    T.E. Woolley, R.E. Baker, E.A. Gaffney, P.K. Maini, S. Seirin-Lee, Effects of intrinsic stochasticity on delayed reaction-diffusion patterning systems. Phys. Rev. E 85 (5), 051914 (2012)Google Scholar
  39. 39.
    E.A. Gaffney, N.A.M. Monk, Gene expression time delays and Turing pattern formation systems. Bull. Math. Biol. 68 (1), 99–130 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    S.S. Lee, E.A. Gaffney, Aberrant behaviours of reaction diffusion self-organisation models on growing domains in the presence of gene expression time delays. Bull. Math. Biol. 72, 2161–2179 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    S.S. Lee, E.A. Gaffney, R.E. Baker, The dynamics of Turing patterns for morphogen-regulated growing domains with cellular response delays. Bull. Math. Biol. 73 (11), 2527–2551 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    R.G. Plaza, F. Sanchez-Garduno, P. Padilla, R.A. Barrio, P.K. Maini, The effect of growth and curvature on pattern formation. J. Dyn. Differ. Equ. 16 (4), 1093–1121 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    K.W. Morton, D.F. Mayers, Numerical Solution of Partial Differential Equations: An Introduction (Cambridge University Press, Cambridge, 2005)CrossRefzbMATHGoogle Scholar
  44. 44.
    C.B. Macdonald, S.J. Ruuth, The implicit closest point method for the numerical solution of partial differential equations on surfaces. SIAM J. Sci. Comput. 31 (6), 4330–4350 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    S.J. Ruuth, B. Merriman, A simple embedding method for solving partial differential equations on surfaces. J. Comput. Phys. 227 (3), 1943–1961 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    T.K. Callahan, E. Knobloch, Bifurcations on the fcc lattice. Phys. Rev. E 53 (4), 3559–3562 (1996)MathSciNetCrossRefGoogle Scholar
  47. 47.
    T. Leppänen, M. Karttunen, K. Kaski, R.A. Barrio, L. Zhang, A new dimension to Turing patterns. Physica D 168, 35–44 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    E. Dulos, P. Davies, B. Rudovics, P. De Kepper, From quasi-2D to 3D Turing patterns in ramped systems. Physica D 98 (1), 53–66 (1996)CrossRefzbMATHGoogle Scholar
  49. 49.
    S. Muraki, E.B. Lum, K.-L. Ma, M. Ogata, X. Liu, A PC cluster system for simultaneous interactive volumetric modeling and visualization, in Proceedings of the 2003 IEEE Symposium on Parallel and Large-Data Visualization and Graphics (2003), p. 13Google Scholar
  50. 50.
    S.L. Judd, M. Silber, Simple and superlattice Turing patterns in reaction-diffusion systems: bifurcation, bistability, and parameter collapse. Physica D 136 (1–2), 45–65 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    T.K. Callahan, E. Knobloch, Pattern formation in three-dimensional reaction–diffusion systems. Physica D 132 (3), 339–362 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    T.K. Callahan, E. Knobloch, Symmetry-breaking bifurcations on cubic lattices. Nonlinearity 10 (5), 1179–1216 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    T. Leppänen, M. Karttunen, R.A. Barrio, K. Kaski, Morphological transitions and bistability in Turing systems. Phys. Rev. E. 70, 066202 (2004)CrossRefGoogle Scholar
  54. 54.
    D.T. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115, 1716 (2001)CrossRefGoogle Scholar
  55. 55.
    M. Rathinam, L.R. Petzold, Y. Cao, D.T. Gillespie, Stiffness in stochastic chemically reacting systems: the implicit tau-leaping method. J. Chem. Phys. 119 (24), 12784–12794 (2003)CrossRefGoogle Scholar
  56. 56.
    Y. Yang, M. Rathinam, Tau leaping of stiff stochastic chemical systems via local central limit approximation. J. Comput. Phys. 242, 581–606 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    G. Klingbeil, R. Erban, M. Giles, P.K. Maini, STOCHSIMGPU: parallel stochastic simulation for the Systems Biology Toolbox 2 for Matlab. Bioinformatics 27 (8), 1170–1171 (2011)CrossRefGoogle Scholar
  58. 58.
    R.A. Satnoianu, M. Menzinger, P.K. Maini, Turing instabilities in general systems. J. Math. Biol. 41 (6), 493–512 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    V. Klika, R.E. Baker, D. Headon, E.A. Gaffney, The influence of receptor-mediated interactions on reaction-diffusion mechanisms of cellular self-organisation. B. Math. Biol. 74 (4), 935–957 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters. Commun. ACM 51 (1), 107–113 (2008)CrossRefGoogle Scholar
  61. 61.
    T. Ideker, T. Galitski, L. Hood, A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2 (1), 343–372 (2001)CrossRefGoogle Scholar
  62. 62.
    M.W. Covert, B.O. Palsson, Constraints-based models: regulation of gene expression reduces the steady-state solution space. J. Theor. Biol. 221 (3), 309–325 (2003)MathSciNetCrossRefGoogle Scholar
  63. 63.
    O. Cominetti, A. Matzavinos, S. Samarasinghe, D. Kulasiri, S. Liu, P.K. Maini, R. Erban, DifFUZZY: a fuzzy clustering algorithm for complex datasets. Int. J. Comput. Intel. Bioinf. Syst. Biol. 1 (4), 402–417 (2010)Google Scholar
  64. 64.
    H. Conzelmann, J. Saez-Rodriguez, T. Sauter, E. Bullinger, F. Allgöwer, E.D. Gilles, Reduction of mathematical models of signal transduction networks: simulation-based approach applied to EGF receptor signalling. Syst. Biol. 1 (1), 159–169 (2004)CrossRefGoogle Scholar
  65. 65.
    O. Radulescu, A.N. Gorban, A. Zinovyev, A. Lilienbaum, Robust simplifications of multiscale biochemical networks. BMC Syst. Biol. 2 (1), 86 (2008)Google Scholar
  66. 66.
    L. Marcon, X. Dirego, J. Sharpe, P. Muller, High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals. eLife 5, e14022 (2016)CrossRefGoogle Scholar
  67. 67.
    W. Weber, J. Stelling, M. Rimann, B. Keller, M. Daoud-El Baba, C.C. Weber, D. Aubel, M. Fussenegger, A synthetic time-delay circuit in mammalian cells and mice. Proc. Natl. Acad. Sci. 104 (8), 2643–2648 (2007)CrossRefGoogle Scholar
  68. 68.
    E. Fung, W.W. Wong, J.K. Suen, T. Bulter, S. Lee, J.C. Liao, A synthetic gene–metabolic oscillator. Nature 435 (7038), 118–122 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Wolfson Centre for Mathematical Biology, Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations