Cyberemotions pp 279-304 | Cite as

Zooming in: Studying Collective Emotions with Interactive Affective Systems

  • Marcin Skowron
  • Stefan Rank
  • David Garcia
  • Janusz A. Hołyst
Part of the Understanding Complex Systems book series (UCS)


Computer-mediated communication between humans is at the center of the formation of collective emotions on the Internet. This chapter presents how interactive affective systems can be applied in order to study the role of emotion in online communication at the micro-scale, i.e. between individual users or between users and artificial communication partners. Specifically, we report on the effect of a simulated conversational partner’s affective profile, the use of fine-grained communication scenarios and social interaction context on changes in emotional states and expressed affect of users as well as their communication patterns. Based on these findings, we propose applications for such systems focused on supporting different e-communities with real-time information and discuss ethical implications of such systems.


Emotional Expression Online Community Affective Dimension Emotional Connection Communication Scenario 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Altman, I., Taylor, D.: Social Penetration: The Development of Interpersonal Relationships. Holt, Rinehart and Winston, New York (1973)Google Scholar
  2. Bates, J.: The role of emotion is believable agents. Commun. ACM 37 (7), 122–125 (1994). doi:10.1145/176789.176803CrossRefGoogle Scholar
  3. Chmiel, A., Sienkiewicz, J., Thelwall, M., Paltoglou, G., Buckley, K., Kappas, A., Hołyst, J.A.: Collective emotions online and their influence on community life. PLoS ONE 6 (7), e22207 (2011a). doi:10.1371/journal.pone.0022207ADSCrossRefGoogle Scholar
  4. Chmiel, A., Sobkowicz, P., Sienkiewicz, J., Paltoglou, G., Buckley, K., Thelwall, M., Hołyst, J.A.: Negative emotions boost user activity at BBC forum. Physica A 390 (16), 2936–2944 (2011b) doi:10.1016/j.physa.2011.03.040ADSCrossRefGoogle Scholar
  5. Ellsworth, P.C., Scherer, K.R.: Appraisal processes in emotion. In: Davidson, R.J., Scherer, K.R., Goldsmith, H.H. (eds.) Handbook Of Affective Sciences, pp. 572–595. Oxford University Press, Oxford (2003)Google Scholar
  6. Forgas, J.P.: Affective influences on self-disclosure: mood effects on the intimacy and reciprocity of disclosing personal information. J. Pers. Soc. Psychol. 100 (3), 449–461 (2011) doi:10.1037/a0021129CrossRefGoogle Scholar
  7. Frijda, N.H.: The Laws of Emotion. Lawrence Erlbaum Associates Publishers, Mahwah (2007)Google Scholar
  8. Garas, A., Garcia, D., Skowron, M., Schweitzer, F.: Emotional persistence in online chatting communities. Sci. Rep. 2, 402 (2012). doi:10.1038/srep00402ADSCrossRefGoogle Scholar
  9. Garcia, D., Schweitzer, F.: Emotions in product reviews – empirics and models. In: Proceedings of 2011 IEEE International Conference on Privacy, Security, Risk, and Trust, and IEEE International Conference on Social Computing, PASSAT/SocialCom, pp. 483–488 (2011). doi:10.1109/PASSAT/SocialCom.2011.219Google Scholar
  10. Gligorijević, V., Skowron, M., Tadić, B.: Evolving topology on the network of online chats. Technical Report TR-2012-14, Österreichisches Forschungsinstitut für Artificial Intelligence, Wien (2012a)Google Scholar
  11. Gligorijević, V., Skowron, M., Tadić, B.: Structure and stability of online chat networks built on emotion-carrying links. Physica A 392 (3), 538–543 (2013). doi:10.1016/j.physa.2012.10.003ADSCrossRefGoogle Scholar
  12. Gobron, S., Ahn, J., Silvestre, Q., Thalmann, D., Rank, S., Skowron, M., Paltoglou, G., Thelwall, M.: An interdisciplinary VR-architecture for 3D chatting with non-verbal communication. In: Coquillart, S., Steed, A., Welch, G. (eds.) JVRC11: Joint Virtual Reality Conference of EGVE - EuroVR, pp. 87–94. Eurographics Association (2011). doi:10.2312/EGVE/JVRC11/087-094Google Scholar
  13. Hamilton, W.: The genetical evolution of social behaviour. J. Theor. Biol. 7 (1), 1–16 (1964). doi:0.1016/0022-5193(64)90038-4Google Scholar
  14. Hatfield, M., Cacioppo, J., Rapson, R.: Emotional Contagion. Cambridge University Press, Cambridge (1994)Google Scholar
  15. Hillmann, R., Trier, M.: Sentiment polarization and balance among users in online social networks. In: Joshi, K.D., Yoo, Y. (eds.) Proceedings of the 18th Americas Conference on Information Systems AMCIS 2012, Seattle, WA, p. 10 (2012)Google Scholar
  16. Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6 (2), 65–70 (1979)MathSciNetzbMATHGoogle Scholar
  17. Hurst, H.: Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 116, 770–799 (1951)Google Scholar
  18. Kappas, A., Küster, D., Theunis, M., Tsankova, E.: Cyberemotions: subjective and physiological responses to reading online discussion forums. Poster presented at the 50th Annual Meeting of the Society for Psychophysiological Research, Portland, Oregon, September 2010 (2010)Google Scholar
  19. Kemper, T.: Predicting emotions from social relations. Soc. Psychol. Q. 54 (4), 330–342 (1991)CrossRefGoogle Scholar
  20. Kuppens, P., Oravecz, Z., Tuerlinckx, F.: Feelings change: accounting for individual differences in the temporal dynamics of affect. J. Pers. Soc. Psychol. 99 (6), 1042–1060 (2010). doi:10.1037/a0020962CrossRefGoogle Scholar
  21. Küster, D., Kappas, A.: Measuring emotions in individuals and Internet Communities. In: Benski, T., Fisher, E. (eds.) Internet and Emotions, pp. 48–64. Routledge, New York (2014)Google Scholar
  22. Küster, D., Kappas, A., Theunis, M., Tsankova, E.: Cyberemotions: subjective and physiological responses elicited by contributing to online discussion forums. Poster presented at the 51st Annual Meeting of the Society for Psychophysiological Research, Boston, MA, September 2011 (2011)Google Scholar
  23. Lester, J.C., Converse, S.A., Kahler, S.E., Barlow, S.T., Stone, B.A., Bhogal, R.S.: The persona effect: affective impact of animated pedagogical agents. In: Pemberton, S. (ed.) CHI ’97 Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, pp. 359–366. ACM, New York (1997). doi:10.1145/258549.258797CrossRefGoogle Scholar
  24. Levenson, R., Ruef, A.: Empathy: a psychological substrate. J. Pers. Soc. Psychol. 63 (2), 234–246 (1992) doi:10.1037/0022-3514.63.2.234CrossRefGoogle Scholar
  25. Locke, K., Horowitz, L.: Satisfaction and interpersonal interactions as a function of similarity in level of dysphoria. J. Pers. Soc. Psychol. 58 (5), 823–831 (1990). doi:10.1037/0022-3514.58.5.823CrossRefGoogle Scholar
  26. Marsella, S., Gratch, J., Petta, P.: Computational models of emotion. In: A Blueprint for Affective Computing - A Sourcebook and Manual, pp. 21–46. Oxford University Press, Oxford (2010)Google Scholar
  27. Mitrović, M., Tadić, B.: Patterns of emotional blogging and emergence of communities: agent-based model on bipartite networks (2011). Google Scholar
  28. Mitrović, M., Tadić, B.: Dynamics of bloggers’ communities: bipartite networks from empirical data and agent-based modeling. Physica A 391 (21), 5264–5278 (2012). doi:10.1016/j.physa.2012.06.004ADSCrossRefGoogle Scholar
  29. Novotny, H., Scott, P., Gibbons, M.: Mode 2’ revisited: the new production of knowledge - introduction. Minerva 41 (3), 179–194 (2003) doi:10.1023/A:1025505528250CrossRefGoogle Scholar
  30. Paltoglou, G., Gobron, S., Skowron, M., Thelwall, M., Thalmann, D.: Sentiment analysis of informal textual communication in cyberspace. In: Proceedings of ENGAGE 2010. LNCS State-of-the-Art Survey, pp. 13–25. Springer, Heidelberg (2010)Google Scholar
  31. Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L.: Mosaic organization of DNA nucleotides. Phys. Rev. E 49 (2), 1685–1689 (1994). doi:10.1103/PhysRevE.49.1685ADSCrossRefGoogle Scholar
  32. Petta, P.: The role of emotions in a tractable architecture for situated cognisers. In: Trappl, R., Petta, P., Payr, S. (eds.) Emotions In Humans And Artifacts. pp. 251–288. MIT Press, Cambridge (2003)Google Scholar
  33. Prescott, T.: Sunny uplands or slippery slopes? the risks and benefits of using robots in care. In: Proceedings of UKRE Workshop on Robot Ethics (2013)Google Scholar
  34. Preston, S., Waal, F.: Empathy: its ultimate and proximal bases. Behav. Brain Sci. 25 (1), 1–20 (2002). doi:10.1017/S0140525X02000018Google Scholar
  35. Rank, S.: Docking agent-based simulation of collective emotion to equation-based models and interactive agents. In: McGraw, R., Imsand, E., Chinni, M.J. (eds.) Proceedings of the 2010 Spring Simulation Multiconference on - SpringSim’10, p. 6. Society for Computer Simulation International, San Diego (2010). doi:10.1145/1878537.1878544Google Scholar
  36. Rank, S., Skowron, M., Garcia, D.: Dyads to groups: modeling interactions with affective dialog systems. Int. J. Comput. Linguistics Res. 4 (1), 22–37 (2013)Google Scholar
  37. Reeves, B., Nass, C.: The Media Equation: How People Treat Computers, Television, and New Media like Real People and Places. Cambridge University Press, Cambridge (1996)Google Scholar
  38. Rimé, B.: Emotion elicits the social sharing of emotion: theory and empirical review. Emot. Rev. 1 (1), 60–85 (2009). doi:10.1177/1754073908097189MathSciNetCrossRefGoogle Scholar
  39. Rosenblatt, A., Greenberg, J.: Examining the world of the depressed: do depressed people prefer others who are depressed. J. Pers. Soc. Psychol. 60 (4), 620–629 (1991). doi:10.1037/0022-3514.60.4.620CrossRefGoogle Scholar
  40. Rybski, D., Buldyrev, S.V., Havlin, S., Liljeros, F., Makse, H.A.: Scaling laws of human interaction activity. Proc. Natl. Acad. Sci. USA 106 (31), 12640–12645 (2009). doi:10.1073/pnas.0902667106ADSCrossRefGoogle Scholar
  41. Schweitzer, F.: Brownian agents and active particles. Collective Dynamics in the Natural and Social Sciences. Springer Series in Synergetics, 1st edn. Springer, Berlin (2003). doi:10.1007/978-3-540-73845-9Google Scholar
  42. Schweitzer, F., Garcia, D.: An agent-based model of collective emotions in online communities. Eur. Phys. J. B 77 (4), 533–545 (2010). doi:10.1140/epjb/e2010-00292-1ADSCrossRefGoogle Scholar
  43. Skowron, M.: Affect listeners: Acquisition of affective states by means of conversational systems. In: Esposito, A., Cambell, N., Vogel, C., Hussain, A., Nijholt, A. (eds.) Development of Multimodal Interfaces—Active Listening and Synchrony: Development of Multimodal Interfaces: Active Listening and Synchrony. Lecture notes in computer science, vol. 5967, pp. 169–181. Springer, Berlin (2010). doi:10.1007/978-3-642-12397-9_14CrossRefGoogle Scholar
  44. Skowron, M., Rank, S.: Affect listeners - from dyads to group interactions with affective dialog systems. In: Proceedings of AISB/IACAP World Congress 2012, LaCATODA 2012, pp. 55–60 (2012)Google Scholar
  45. Skowron, M., Rank, S.: Interacting with collective emotions in e-communities. In: Scheve, C.V., Salmela, M. (eds.) Collective Emotions. Oxford University Press, Oxford (2014). doi:10.1093/acprof:oso/9780199659180.003.0027Google Scholar
  46. Skowron, M., Theunis, M., Rank, S., Borowiec, A.: Effect of affective profile on communication patterns and affective expressions in interactions with a dialog system. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C. (eds.) Affective Computing and Intelligent Interaction: 4th International Conference, ACII 2011, Memphis, TN, USA, October 9–12, 2011, Proceedings, Part I. Lecture Notes in Computer Science, vol. 6974, pp. 347–356. Springer, Berlin (2011a). doi:10.1007/978-3-642-24600-5_38Google Scholar
  47. Skowron, M., Pirker, H., Rank, S., Paltoglou, G., Ahn, J., Gobron, S.: No peanuts! affective cues for the virtual bartender. In: Murray, R.C., McCarthy, P.M. (eds.) Proceedings of the 24th International Florida Artificial Intelligence Research Society Conference, pp. 117–122. AAAI Press, Menlo Park (2011b)Google Scholar
  48. Skowron, M., Rank, S., Theunis, M., Sienkiewicz, J.: The good, the bad and the neutral: affective profile in dialog system-user communication. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C. (eds.) Affective Computing and Intelligent Interaction: 4th International Conference, ACII 2011, Memphis, TN, USA, October 9–12, 2011, Proceedings, Part I. Lecture Notes in Computer Science, vol. 6974, pp. 337–346. Springer, Berlin (2011c). doi:10.1007/978-3-642-24600-5_37CrossRefGoogle Scholar
  49. Skowron, M., Theunis, M., Rank, S., Kappas, A.: Affect and social processes in online communication - experiments with affective dialog system. IEEE Trans. Affect. Comput. 4 (3), 267–279 (2013). doi:10.1109/T-AFFC.2013.16CrossRefGoogle Scholar
  50. Skowron, M., Rank, S., Świderska, A., Küster, D., Kappas, A.: Applying a text-based affective dialogue system in psychological research: case studies on the effects of system behaviour, interaction context and social exclusion. Cogn. Comput. (2014). doi:10.1007/s12559-014-9271-2Google Scholar
  51. Thelwall, M., Buckley, K., Paltoglou, G.: Sentiment in twitter events. J. Am. Soc. Inf. Sci. Technol. 62 (2), 406–418 (2011). doi:10.1002/asi.21462CrossRefGoogle Scholar
  52. Thelwall, M., Buckley, K., Paltoglou, G., Skowron, M., Garcia, D., Gobron, S., Ahn, J., Kappas, A., Küster, D., Hołyst, J.A.: Damping sentiment analysis in online communication: discussions, monologs and dialogs. In: Gelbukh, A. (ed.) Computational Linguistics and Intelligent Text Processing, 14th International Conference, CICLing 2013, Samos, Greece, March 24–30, 2013, Proceedings, Part II. Lecture Notes in Computer Science, vol. 7817, pp. 1–12. Springer, Berlin (2013). doi:10.1007/978-3-642-37256-8_1Google Scholar
  53. Šuvakov, M., Garcia, D., Schweitzer, F., Tadić, B.: Agent-based simulations of emotion spreading in online social networks (2012). Google Scholar
  54. Watson, D., Tellegen, A.: Toward a consensual structure of mood. Psychol. Bull. 98 (2), 219–235 (1985) doi:10.1037/0033-2909.98.2.219CrossRefGoogle Scholar
  55. Wu, Y., Zhou, C., Xiao, J., Kurths, J., Schellnhuber, H.J.: Evidence for a bimodal distribution in human communication. Proc. Natl. Acad. Sci. USA 107 (44), 18803–18808 (2010). doi:10.1073/pnas.1013140107ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Marcin Skowron
    • 1
  • Stefan Rank
    • 2
  • David Garcia
    • 3
  • Janusz A. Hołyst
    • 4
  1. 1.Austrian Research Institute for Artificial IntelligenceViennaAustria
  2. 2.Department of Digital MediaDrexel UniversityPhiladelphiaUSA
  3. 3.ETH ZurichZurichSwitzerland
  4. 4.Faculty of PhysicsWarsaw University of TechnologyWarsawPoland

Personalised recommendations