Cyberemotions pp 207-229 | Cite as

Agent-Based Simulations of Emotional Dialogs in the Online Social Network MySpace

  • Bosiljka Tadić
  • Milovan Šuvakov
  • David Garcia
  • Frank Schweitzer
Part of the Understanding Complex Systems book series (UCS)


Quantitative analysis of the empirical data from online social networks reveals the occurrence of group dynamics in which the user’s emotions are involved. Full understanding of the underlying mechanisms, however, remains a challenging task. Using agent-based computer simulations, in this work we study the dynamics of emotional communications in online social networks. The rules that guide how the agents interact, are motivated by actual online social systems. The realistic network structure and some key parameters are inferred from the empirical dataset compiled from the MySpace social network. An agent’s emotional state is characterized by two variables representing emotional arousal—reactivity to stimuli, and valence—attractiveness or averseness, by which a commonly known emotion can be identified. Elevated arousal triggers an agent’s action. In the simulations, each message is identified as carrying an agent’s emotion along a network link; an aggregated and continuously aging impact of these messages on the recipient agent is considered. Our results indicate that group behavior may arise from individual emotional actions of agents; the collective states appear, which are characterized by temporal correlations and predominantly positive emotions, in analogy to the empirical system; the driving signal—rate of the user stepping into the online world—has a profound effect on building the coherent behaviors that are observed in online social networks. Moreover, our simulations suggest that spreading patterns may differ for the emotions with the entirely different positive and negative emotional content.



The research leading to these results has received funding from the European Community’s Seventh Framework Programme FP7-ICT-2008-3 under grant agreement n o 231323 and the project P-10044-3. B.T. is grateful for support from the national program P1-0044 of the Research Agency of the Republic of Slovenia and COST-TD1210 action. M.Š. also thanks the national research projects ON171037 and III41011 of the Republic of Serbia.


  1. Ahn, J., Gobron, S., Silvestre, Q., Thalmann, D.: Asymmetrical facial expressions based on an advanced interpretation of two-dimensional Russell’s emotional model. EPFL-CONF-164427. (2010)
  2. Amichai-Hamburger, Y.: Internet and personality. Comput. Hum. Behav. 18 (1), 1–10 (2002). doi:10.1016/S0747-5632(01)00034-6CrossRefGoogle Scholar
  3. Amichai-Hamburger, Y., Vinitzky, G.: Social network use and personality. Comput. Hum. Behav. 26 (6), 1289–1295 (2010). doi:10.1016/j.chb.2010.03.018CrossRefGoogle Scholar
  4. Bradley, M.M.: Natural selective attention: orienting and emotion. Psychophysiology 46 (1), 1–11 (2009). doi:10.1111/j.1469-8986.2008.00702.xCrossRefGoogle Scholar
  5. Bradley, M.M., Lang, P.J.: Affective norms for English words (ANEW): instruction manual and affective ratings. Technical Report C-1, University of Florida, Center for Research in Psychophysiology (1999)Google Scholar
  6. Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591–646 (2009). doi:10.1103/RevModPhys.81.591ADSCrossRefGoogle Scholar
  7. Cheung, C.M.K., Chiu, P.Y., Lee, M.K.O.: Online social networks: why do students use facebook? Comput. Hum. Behav. 27 (4), 1337–1343 (2011). doi:10.1016/j.chb.2010.07.028CrossRefGoogle Scholar
  8. Chmiel, A., Sienkiewicz, J., Thelwall, M., Paltoglou, G., Buckley, K., Kappas, A., Hołyst, J.A.: Collective emotions online and their influence on community life. PLoS ONE 6 (7), e22207 (2011). doi:10.1371/journal.pone.0022207ADSCrossRefGoogle Scholar
  9. Coan, J.A., Allen, J.J.B (eds.): The Handbook of Emotion Elicitation and Assessment. Series in Affective Science. Oxford University Press, Oxford (2007)Google Scholar
  10. Crane, R., Schweitzer, F., Sornette, D.: New power law signature of media exposure in human response waiting time distributions. Phys. Rev. E 81 (5), 056101 (2010). doi:10.1103/PhysRevE.81.056101ADSCrossRefGoogle Scholar
  11. DiMaggio, P., Hargittai, E., Neuman, W.R., Robinson, J.P.: Social implications of the internet. Annu. Rev. Sociol. 27 (1), 307–336 (2001). doi:10.1146/annurev.soc.27.1.307CrossRefGoogle Scholar
  12. Dodds, P., Danforth, C.: Measuring the happiness of large-scale written expression: songs, blogs, and presidents. J. Happiness Stud. 11 (4), 441–456 (2010). doi:10.1007/s10902-009-9150-9CrossRefGoogle Scholar
  13. Garas, A., Garcia, D., Skowron, M., Schweitzer, F.: Emotional persistence in online chatting communities. Sci. Rep. 2, 402 (2012). doi:10.1038/srep00402ADSCrossRefGoogle Scholar
  14. Garcia, D., Schweitzer, F.: Emotions in product reviews – empirics and models. In: Proceedings of 2011 IEEE International Conference on Privacy, Security, Risk, and Trust, and IEEE International Conference on Social Computing, PASSAT/SocialCom, pp. 483–488 (2011). doi:10.1109/PASSAT/SocialCom.2011.219)Google Scholar
  15. Garcia, D., Garas, A., Schweitzer, F.: Positive words carry less information than negative words. EPJ Data Sci. 1 (1), 3 (2012). doi:0.1140/epjds3Google Scholar
  16. Giles, M.: A world of connections - a special report on social networking. The Economist, p.16, January (2010)Google Scholar
  17. Giles, J.: Social science lines up its biggest challenges. Nature 470, 18–19 (2011). doi:0.1038/470018aGoogle Scholar
  18. Gligorijević, V., Skowron, M., Tadić, B.: Structure and stability of online chat networks built on emotion-carrying links. Physica A 392 (3), 538–543 (2013). doi:10.1016/j.physa.2012.10.003ADSCrossRefGoogle Scholar
  19. Guimerà, R., Danon, L., Díaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Phys. Rev. E 68 (6), 065103 (2003). doi:10.1103/PhysRevE.68.065103ADSCrossRefGoogle Scholar
  20. Johnson, N.F., Xu, C., Zhao, Z., Ducheneaut, N., Yee, N., Tita, G., Hui, P.M.: Human group formation in online guilds and offline gangs driven by a common team dynamic. Phys. Rev. E 79 (6), 066117 (2009). doi:10.1103/PhysRevE.79.066117ADSCrossRefGoogle Scholar
  21. Kleinberg, J.: The convergence of social and technological networks. Commun. ACM 51 (11), 66–72 (2008). doi:10.1145/1400214.1400232CrossRefGoogle Scholar
  22. Kuppens, P., Oravecz, Z., Tuerlincky, F.: Feelings change: accounting for individual differences in the temporal dynamics of affect. J. Pers. Soc. Psychol. 99 (6), 1042–60 (2010). doi:10.1037/a0020962CrossRefGoogle Scholar
  23. Küster, D., Tsankova, E., Theunis, M., Kappas, A.: Measuring cyberemotions: how do bodily responses relate to the digital world? In: 7th Conference of the Media Psychology Division of the Deutsche Gesellschaft für Psychologie, Bremen, August (2011)Google Scholar
  24. Malmgren, R.D., Stouffer, C.B., Campanharo, A.S.L.O., Amaral, L.A.: On universality in human correspondence activity. Science 325 (5948), 1696–1700 (2009). doi:10.1126/science.1174562ADSCrossRefGoogle Scholar
  25. Mitrović, M., Tadić, B.: Bloggers behavior and emergent communities in blog space. Eur. Phys. J. B 73 (2), 293–301 (2010). doi:10.1140/epjb/e2009-00431-9ADSCrossRefzbMATHGoogle Scholar
  26. Mitrović, M., Tadić, B.: Patterns of emotional blogging and emergence of communities: agent-based model on bipartite networks (2011). Google Scholar
  27. Mitrović, M., Tadić, B.: Emergence and structure of cybercommunities. In: Thai, M.M., Pardalos, P. (eds.) Handbook of Optimization in Complex Networks: Theory and Applications. Springer Optimization and its Applications, vol. 57, pp. 209–227. Springer, New York (2012a). doi:10.1007/978-1-4614-0754-6_8CrossRefGoogle Scholar
  28. Mitrović, M., Tadić, B.: Dynamics of bloggers’ communities: bipartite networks from empirical data and agent-based modeling. Physica A 391 (21), 5264–5278 (2012b). doi:10.1016/j.physa.2012.06.004ADSCrossRefGoogle Scholar
  29. Mitrović, M., Paltoglou, G., Tadić, B.: Networks and emotion-driven user communities at popular blogs. Eur. Phys. J. B 77 (4), 597–609 (2010). doi:10.1140/epjb/e2010-00279-xADSCrossRefGoogle Scholar
  30. Mitrović, M., Paltoglou, G., Tadić, B.: Quantitative analysis of bloggers’ collective behavior powered by emotions. J. Stat. Mech. 2011 (2), P02005 (2011). doi:10.1088/1742-5468/2011/02/P02005Google Scholar
  31. Paltoglou, G., Theunis, M., Kappas, A., Thelwall, M.: Predicting emotional responses to long informal text. IEEE. Trans. Affect. Comput. 4 (1), 107–115 (2013). doi:10.1109/T-AFFC.2012.26Google Scholar
  32. Rimé, B.: Emotion elicits the social sharing of emotion: theory and empirical review. Emot. Rev. 1 (1), 60–85 (2009). doi:10.1177/1754073908097189MathSciNetCrossRefGoogle Scholar
  33. Roca, C.P., Lozano, S., Arenas, A., Sánchez, A.: Topological traps control flow on real networks: the case of coordination failures. PLoS ONE 5 (12), e15210 (2010). doi:10.1371/journal.pone.0015210ADSCrossRefGoogle Scholar
  34. Rodgers, J.L.: The epistemology of mathematical and statistical modeling: a quiet methodological revolution. Am. Psychol. 65 (1), 1–12 (2010). doi:10.1037/a0018326CrossRefGoogle Scholar
  35. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39 (6), 1161–1178 (1980). doi:10.1037/h0077714CrossRefGoogle Scholar
  36. Ryan, T., Xsenos, S.: Who uses Facebook? An investigation into the relationship between the big five, shyness, narcissism, loneliness, and facebook usage. Comput. Hum. Behav. 27 (5), 1658–1664 (2011). doi:10.1016/j.chb.2011.02.004CrossRefGoogle Scholar
  37. Scherer, K.R.: What are emotions? And how can they be measured? Soc. Sci. Inf. 44 (4), 695–729 (2005). doi:10.1177/0539018405058216CrossRefGoogle Scholar
  38. Schweitzer, F.: Brownian Agents and Active Particles. Collective Dynamics in the Natural and Social Sciences, 1st edn. Springer Series in Synergetics. Springer, Berlin (2003). 10.1007/978-3-540-73845-9Google Scholar
  39. Schweitzer, F., Garcia, D.: An agent-based model of collective emotions in online communities. Eur. Phys. J. B 77 (4), 533–545 (2010). doi:10.1140/epjb/e2010-00292-1ADSCrossRefGoogle Scholar
  40. Šuvakov, M., Mitrović, M., Gligorijević, V., Tadić, B.: How the online social networks are used: dialogues-based structure of Myspace. J. R. Soc. Interface 10 (79), 20120819 (2012). doi:10.1098/rsif.2012.0819CrossRefGoogle Scholar
  41. Šuvakov, M., Garcia, D., Schweitzer, F., Tadić, B.: Agent-based simulations of emotion spreading in online social networks (2012). Google Scholar
  42. Szell, M., Thurner, S.: Measuring social dynamics in a massive multiplayer online game. Soc. Networks 32 (4), 313–329 (2010). doi:10.1016/j.socnet.2010.06.001CrossRefGoogle Scholar
  43. Szell, M., Lambiotte, R., Thurner, S.: Multirelational organization of large-scale social networks in an online world. Proc. Natl. Acad. Sci. USA 107 (31), 13636–13641 (2010). doi:10.1073/pnas.1004008107ADSCrossRefGoogle Scholar
  44. Tadić, B.: Modeling behavior of Web users as agents with reason and sentiment. In: Kora, A.B. (ed.) Advances in Computational Modeling Research: Theory, Developments and Applications, pp. 177–186. Novapublishing, New York (2013)Google Scholar
  45. Tadić, B., Šuvakov, M.: Can human-like bots control collective mood: agent-based simulations of online chats. J. Stat. Mech. Theory E 2013 (10), P10014 (2013). doi:10.1088/1742-5468/2013/10/P10014CrossRefGoogle Scholar
  46. Tadić, B., Malarz, K., Kułakowski, K.: Magnetization reversal in spin patterns with complex geometry. Phys. Rev. Lett. 94, 137204 (2005). doi:10.1103/PhysRevLett.94.137204ADSCrossRefGoogle Scholar
  47. Tadić, B., Rodgers, G.J., Thurner, S.: Transport on complex networks: flow, jamming and optimization. Int. J. Bifurcat. Chaos 17 (7), 2363–2385 (2007). doi:10.1142/S0218127407018452CrossRefzbMATHGoogle Scholar
  48. Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., Kappas, A.: Sentiment strength detection in short informal text. J. Am. Soc. Inf. Sci. Technol. 61 (12), 2544–2558 (2010). doi:10.1002/asi.21416CrossRefGoogle Scholar
  49. van Rijsbergen, C.J., Robertson, S.E., Porter, M.F.: New Models in Probabilistic Information Retrieval, Computer Laboratory. University of Cambridge, Cambridge (1980)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Bosiljka Tadić
    • 1
    • 2
  • Milovan Šuvakov
    • 1
    • 2
  • David Garcia
    • 3
  • Frank Schweitzer
    • 3
  1. 1.Department of Theoretical PhysicsJožef Stefan InstituteLjubljanaSlovenia
  2. 2.Institute of Physics BelgradeUniversity of BelgradeBelgradeSerbia
  3. 3.ETH ZurichZurichSwitzerland

Personalised recommendations