DNA Methylation and Gene Regulation in Honeybees: From Genome-Wide Analyses to Obligatory Epialleles

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 945)

Abstract

In contrast to heavily methylated mammalian genomes, invertebrate genomes are only sparsely methylated in a ‘mosaic’ fashion with the majority of methylated CpG dinucleotides found across gene bodies. Importantly, this gene body methylation is frequently associated with active transcription, and studies in the honeybee have shown that there are strong links between gene body methylation and alternative splicing. Additional work also highlights that obligatory methylated epialleles influence transcriptional changes in a context-specific manner. Here we discuss the current knowledge in this emerging field and highlight both similarities and differences between DNA methylation systems in mammals and invertebrates. Finally, we argue that the relationship between genetic variation, differential DNA methylation, other epigenetic modifications and the transcriptome must be further explored to fully understand the role of DNA methylation in converting genomic sequences into phenotypes.

Abbreviations

5hmC

5-hydroxymethylcytosine

5mC

5-methylcytosine

ALK

Anaplastic lymphoma kinase

CpG

Cytosine and guanine dinucleotide separated by one phosphate in DNA

CTCF

CCCTC-binding protein

DBP

DNA-binding protein

DNMT

DNA methyltransferase

LAM

Lysosomal alpha-mannosidase

MeCP

Methyl-CpG-binding factor

miRNA

microRNA small non-coding RNA of about 22 nucleotides

mRNA

messenger RNA

PTM

Post-translational modification

RdDM

RNA-directed DNA methylation system

TET

Ten-eleven translocation enzyme

References

  1. Ball MP, Li JB, Gao Y, Lee JH, LeProust EM, Park IH, et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells (vol 27, pg 361, 2009). Nat Biotechnol. 2009;27(5):485.Google Scholar
  2. Bao N, Lye KW, Barton MK. MicroRNA binding sites in Arabidopsis class IIIHD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell. 2004;7(5):653–62.CrossRefPubMedGoogle Scholar
  3. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128(4):669–81.CrossRefPubMedGoogle Scholar
  4. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, et al. The NIH roadmap epigenomics mapping consortium. Nat Biotechnol. 2010;28(10):1045–8. doi:10.1038/nbt1010-1045.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21. doi:10.1101/Gad.947102.CrossRefPubMedGoogle Scholar
  6. Bonasio R, Li QY, Lian JM, Mutti NS, Jin LJ, Zhao HM, et al. Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Curr Biol. 2012;22(19):1755–64.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bourc’his D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature. 2004;431(7004):96–9.CrossRefPubMedGoogle Scholar
  8. Capuano F, Mulleder M, Kok R, Blom HJ, Ralser M. Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species. Anal Chem. 2014;86(8):3697–702. doi:10.1021/ac500447w. Epub 2014 Mar 25.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10(5):295–304. doi:10.1038/nrg2540.CrossRefPubMedGoogle Scholar
  10. Chan SWL, Henderson IR, Jacobsen SE. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet. 2005;6(5):351–60.CrossRefPubMedGoogle Scholar
  11. Chen Q, Chen Y, Bian C, Fujiki R, Yu X. TET2 promotes histone O-GlcNAcylation during gene transcription. Nature. 2013;493(7433):561–4.CrossRefPubMedGoogle Scholar
  12. Cheung HH, Davis AJ, Lee TL, Pang AL, Nagrani S, Rennert OM, et al. Methylation of an intronic region regulates miR-199a in testicular tumor malignancy. Oncogene. 2011;30(31):3404–15.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Clamp M, Fry B, Kamal M, Xie XH, Cuff J, Lin MF, et al. Distinguishing protein-coding and noncoding genes in the human genome. Proc Natl Acad Sci U S A. 2007;104(49):19428–33. doi:10.1073/pnas.0709013104.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Delatte B, Jeschke J, Defrance M, Bachman M, Creppe C, Calonne E, et al. Genome-wide hydroxymethylcytosine pattern changes in response to oxidative stress. Sci Rep. 2015;5:12714. doi:10.1038/srep12714.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dickman MJ, Kucharski R, Maleszka R, Hurd PJ. Extensive histone post-translational modification in honey bees. Insect Biochem Mol Biol. 2013;43(2):125–37. doi:10.1016/j.ibmb.2012.11.003.CrossRefPubMedGoogle Scholar
  16. Ehrlich M, Gamasosa MA, Huang LH, Midgett RM, Kuo KC, Mccune RA, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells. Nucleic Acids Res. 1982;10(8):2709–21.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Feng SH, Cokus SJ, Zhang XY, Chen PY, Bostick M, Goll MG, et al. Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci U S A. 2010;107(19):8689–94.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Foret S, Kucharski R, Pellegrini M, Feng SH, Jacobsen SE, Robinson GE, et al. DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proc Natl Acad Sci U S A. 2012;109(13):4968–73. doi:10.1073/pnas.1202392109.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Foret S, Kucharski R, Pittelkow Y, Lockett GA, Maleszka R. Epigenetic regulation of the honey bee transcriptome: unravelling the nature of methylated genes. BMC Genomics. 2009;10:472.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fuks F. DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev. 2005;15(5):490–5.CrossRefPubMedGoogle Scholar
  21. Furey TS, Sethupathy P. Genetics driving epigenetics. Science. 2013;342(6159):705–6. doi:10.1126/science.1246755.CrossRefPubMedGoogle Scholar
  22. Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem. 2005;74:481–514. doi:10.1146/annurev.biochem.74.010904.153721.CrossRefPubMedGoogle Scholar
  23. Gutierrez-Arcelus M, Lappalainen T, Montgomery SB, Buil A, Ongen H, Yurovsky A, et al. Passive and active DNA methylation and the interplay with genetic variation in gene regulation, Elife. 2013;2:e00523.PubMedPubMedCentralGoogle Scholar
  24. Haig D. The (dual) origin of epigenetics. Cold Spring Harb Symp Quant Biol. 2004;69:67–70.CrossRefPubMedGoogle Scholar
  25. Haig D. Commentary: the epidemiology of epigenetics. Int J Epidemiol. 2012;41(1):13–6.CrossRefPubMedGoogle Scholar
  26. Halfmann R, Lindquist S. Epigenetics in the extreme: prions and the inheritance of environmentally acquired traits. Science. 2010;330(6004):629–32.CrossRefPubMedGoogle Scholar
  27. Holliday R, Pugh JE. DNA modification mechanisms for control of gene activity during development. Heredity. 1975;35(Aug):149.Google Scholar
  28. Huh I, Zeng J, Park T, Yi SV. DNA methylation and transcriptional noise. Epigenetics Chromatin. 2013;6:9.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jablonka E, Lamb MJ. The changing concept of epigenetics. From epigenesis to epigenetics: the genome in context. Ann NY Acad Sci. 2002;981:82–96.CrossRefPubMedGoogle Scholar
  30. Jablonka E, Lamm E. Commentary: the epigenotype-a dynamic network view of development. Int J Epidemiol. 2012;41(1):16–20.CrossRefPubMedGoogle Scholar
  31. Jeltsch A, Jurkowska RZ. New concepts in DNA methylation. Trends Biochem Sci. 2014;39(7):310–8.CrossRefPubMedGoogle Scholar
  32. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.CrossRefPubMedGoogle Scholar
  33. Jones PA, Liang GN. OPINION Rethinking how DNA methylation patterns are maintained. Nat Rev Genet. 2009;10(11):805–11.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science. 2001;293(5532):1068–70.CrossRefPubMedGoogle Scholar
  35. Jullien PE, Kinoshita T, Ohad N, Berger F. Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell. 2006;18(6):1360–72.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kasowski M, Kyriazopoulou-Panagiotopoulou S, Grubert F, Zaugg JB, Kundaje A, Liu YL, et al. Extensive variation in chromatin states across humans. Science. 2013;342(6159):750–2. doi:10.1126/science.1242510.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kato M, Miura A, Bender J, Jacobsen SE, Kakutani T. Role of CG and non-CG methylation in immobilization of transposons in arabidopsis. Curr Biol. 2003;13(5):421–6.CrossRefPubMedGoogle Scholar
  38. Kerkel K, Spadola A, Yuan E, Kosek J, Jiang L, Hod E, et al. Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat Genet. 2008;40(7):904–8. doi:10.1038/Ng.174.CrossRefPubMedGoogle Scholar
  39. Kilpinen H, Waszak SM, Gschwind AR, Raghav SK, Witwicki RM, Orioli A, et al. Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription. Science. 2013;342(6159):744–7. doi:10.1126/science.1242463.CrossRefPubMedGoogle Scholar
  40. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.CrossRefPubMedGoogle Scholar
  41. Kucharski R, Foret S, Maleszka R. EGFR gene methylation is not involved in Royalactin controlled phenotypic polymorphism in honey bees. Sci Rep-Uk. 2015;5:14070. doi:10.1038/srep14070.CrossRefGoogle Scholar
  42. Kucharski R, Maleszka J, Foret S, Maleszka R. Nutritional control of reproductive status in honeybees via DNA methylation. Science. 2008;319(5871):1827–30. doi:10.1126/science.1153069.CrossRefPubMedGoogle Scholar
  43. Kucharski R, Maleszka J, Maleszka R. A possible role of DNA methylation in functional divergence of a fast evolving duplicate gene encoding odorant binding protein 11 in the honeybee. Proc Biol Sci. 2016;283(1833):20160558. doi: 10.1098/rspb.2016.0558.
  44. Kulis M, Queiros AC, Beekman R, Martin-Subero JI. Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. Bba-Gene Regul Mech. 2013;1829(11):1161–74.Google Scholar
  45. Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317–30.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Landan G, Cohen NM, Mukamel Z, Bar A, Molchadsky A, Brosh R, et al. Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues. Nat Genet. 2012;44(11):1207–14. doi:10.1038/ng.2442.CrossRefPubMedGoogle Scholar
  47. Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993;366(6453):362–5.CrossRefPubMedGoogle Scholar
  48. Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, et al. Global epigenomic reconfiguration during mammalian brain development. Science. 2013;341(6146):629–40. doi:10.1126/science.1237905.CrossRefGoogle Scholar
  49. Lorincz MC, Dickerson DR, Schmitt M, Groudine M. Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol. 2004;11(11):1068–75. doi:10.1038/Nsmb840.CrossRefPubMedGoogle Scholar
  50. Lu FL, Liu YT, Jiang L, Yamaguchi S, Zhang Y. Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev. 2014;28(19):2103–19.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 2007;67(4):1424–9.CrossRefPubMedGoogle Scholar
  52. Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R. The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol. 2010;8(11):e1000506. doi:10.1371/journal.pbio.1000506.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lyko F, Maleszka R. Insects as innovative models for functional studies of DNA methylation. Trends Genet. 2011;27(4):127–31. doi:10.1016/j.tig.2011.01.003.CrossRefPubMedGoogle Scholar
  54. Maleszka R. Epigenetic integration of environmental and genomic signals in honey bees: the critical interplay of nutritional, brain and reproductive networks. Epigenetics. 2008;3(4):188–92: 6697 [pii].CrossRefPubMedGoogle Scholar
  55. Maleszka R. The social honey bee in biomedical research: realities and expectations. Drug Discov Today Dis Models. 2014;12:7–13. doi:10.1016/j.ddmod.2014.06.001.CrossRefGoogle Scholar
  56. Maleszka R, Mason PH, Barron AB. Epigenomics and the concept of degeneracy in biological systems. Brief Funct Genomics. 2014;13(3):191–202. doi:10.1093/bfgp/elt050.CrossRefPubMedGoogle Scholar
  57. Maleszka R. Epigenetic code and insect behavioural plasticity. Curr Opin Insect Sci. 2016;15:45–52. doi:10.1016/j.cois.2016.03.003.
  58. Maunakea AK, Chepelev I, Cui KR, Zhao KJ. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res. 2013;23(11):1256–69.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466(7303):253–7.CrossRefPubMedPubMedCentralGoogle Scholar
  60. McVicker G, van de Geijn B, Degner JF, Cain CE, Banovich NE, Raj A, et al. Identification of genetic variants that affect histone modifications in human cells. Science. 2013;342(6159):747–9. doi:10.1126/science.1242429.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Miklos GLG, Maleszka R. Epigenomic communication systems in humans and honey bees: from molecules to behavior. Horm Behav. 2011;59(3):399–406. doi:10.1016/j.yhbeh.2010.05.016.CrossRefGoogle Scholar
  62. Pastor WA, Aravind L, Rao A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol. 2013;14(6):341–56. doi:10.1038/Nrm3589.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Regev A, Lamb MJ, Jablonka E. The role of DNA methylation in invertebrates: developmental regulation or genome defense? Mol Biol Evol. 1998;15(7):880–91.CrossRefGoogle Scholar
  64. Richards EJ. Opinion – inherited epigenetic variation – revisiting soft inheritance. Nat Rev Genet. 2006;7(5):395–401. doi:10.1038/Nrg1834.CrossRefPubMedGoogle Scholar
  65. Riggs AD. X-inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet. 1975;14(1):9–25.CrossRefPubMedGoogle Scholar
  66. Schilling E, El Chartouni C, Rehli M. Allele-specific DNA methylation in mouse strains is mainly determined by cis-acting sequences. Genome Res. 2009;19(11):2028–35. doi:10.1101/gr.095562.109.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Schubeler D. Epigenetic islands in a genetic ocean. Science. 2012;338(6108):756–7. doi:10.1126/science.1227243.CrossRefPubMedGoogle Scholar
  68. Schultz MD, He YP, Whitaker JW, Hariharan M, Mukamel EA, Leung D, et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature. 2015;523(7559):212–6.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Sha K, Fire A. Imprinting capacity of gamete lineages in Caenorhabditis elegans. Genetics. 2005;170(4):1633–52.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Shoemaker R, Deng J, Wang W, Zhang K. Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Res. 2010;20(7):883–9. doi:10.1101/gr.104695.109.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011;479(7371):74–9. doi:10.1038/Nature10442.CrossRefPubMedGoogle Scholar
  72. Simola DF, Ye C, Mutti NS, Dolezal K, Bonasio R, Liebig J, et al. A chromatin link to caste identity in the carpenter ant Camponotus floridanus. Genome Res. 2013;23(3):486–96.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14(3):204–20. doi:10.1038/nrg3354.CrossRefPubMedGoogle Scholar
  74. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9(6):465–76.CrossRefPubMedGoogle Scholar
  75. Suzuki MM, Kerr ARW, De Sousa D, Bird A. CpG methylation is targeted to transcription units in an invertebrate genome. Genome Res. 2007;17(5):625–31.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Takayama S, Dhahbi J, Roberts A, Mao G, Heo SJ, Pachter L, et al. Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity. Genome Res. 2014;24(5):821–30.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Tweedie S, Charlton J, Clark V, Bird A. Methylation of genomes and genes at the invertebrate-vertebrate boundary. Mol Cell Biol. 1997;17(3):1469–75.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Waddington CH. The strategy of the genes. A discussion of some aspects of theoretical biology. London: George Allen & Unwin; 1957. p. 1957.Google Scholar
  79. Wagner JR, Busche S, Ge B, Kwan T, Pastinen T, Blanchette M. The relationship between DNA methylation, genetic and expression inter-individual variation in untransformed human fibroblasts. Genome Biol. 2014;15(2):R37. doi:10.1186/gb-2014-15-2-r37.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Wang X, Wheeler D, Avery A, Rago A, Choi JH, Colbourne JK, et al. Function and evolution of DNA methylation in Nasonia vitripennis. PLoS Genet. 2013;9(10):e1003872.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Weber M, Schubeler D. Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr Opin Cell Biol. 2007;19(3):273–80.CrossRefPubMedGoogle Scholar
  82. Wedd L, Kucharski R, Maleszka R. Differentially methylated obligatory epialleles modulate context-dependent LAM gene expression in the honey bee Apis mellifera. Epigenetics. 2016;11(1):1–10.CrossRefPubMedGoogle Scholar
  83. Wojciechowski M, Rafalski D, Kucharski R, Misztal K, Maleszka J, Bochtler M, et al. Insights into DNA hydroxymethylation in the honeybee from in-depth analyses of TET dioxygenase. Open Biol. 2014;4(8). doi:Unsp 140110.Google Scholar
  84. Xiang H, Zhu JD, Chen QA, Dai FY, Li X, Li MW, et al. Single base-resolution methylome of the silkworm reveals a sparse epigenomic map (vol 28, pg 516, 2010). Nat Biotechnol. 2010;28(7):756.Google Scholar
  85. Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 2010;328(5980):916–9. doi:10.1126/science.1186366.CrossRefPubMedGoogle Scholar
  86. Zhang GQ, Huang H, Liu D, Cheng Y, Liu XL, Zhang WX, et al. N-6-methyladenine DNA modification in Drosophila. Cell. 2015;161(4):893–906.CrossRefPubMedGoogle Scholar
  87. Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet. 2007;39(1):61–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Research School of BiologyThe Australian National UniversityCanberraAustralia

Personalised recommendations