Skip to main content

DNA Methylation and Gene Regulation in Honeybees: From Genome-Wide Analyses to Obligatory Epialleles

  • Chapter
  • First Online:
DNA Methyltransferases - Role and Function

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 945))

Abstract

In contrast to heavily methylated mammalian genomes, invertebrate genomes are only sparsely methylated in a ‘mosaic’ fashion with the majority of methylated CpG dinucleotides found across gene bodies. Importantly, this gene body methylation is frequently associated with active transcription, and studies in the honeybee have shown that there are strong links between gene body methylation and alternative splicing. Additional work also highlights that obligatory methylated epialleles influence transcriptional changes in a context-specific manner. Here we discuss the current knowledge in this emerging field and highlight both similarities and differences between DNA methylation systems in mammals and invertebrates. Finally, we argue that the relationship between genetic variation, differential DNA methylation, other epigenetic modifications and the transcriptome must be further explored to fully understand the role of DNA methylation in converting genomic sequences into phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5hmC:

5-hydroxymethylcytosine

5mC:

5-methylcytosine

ALK:

Anaplastic lymphoma kinase

CpG:

Cytosine and guanine dinucleotide separated by one phosphate in DNA

CTCF:

CCCTC-binding protein

DBP:

DNA-binding protein

DNMT:

DNA methyltransferase

LAM:

Lysosomal alpha-mannosidase

MeCP:

Methyl-CpG-binding factor

miRNA:

microRNA small non-coding RNA of about 22 nucleotides

mRNA:

messenger RNA

PTM:

Post-translational modification

RdDM:

RNA-directed DNA methylation system

TET:

Ten-eleven translocation enzyme

References

  • Ball MP, Li JB, Gao Y, Lee JH, LeProust EM, Park IH, et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells (vol 27, pg 361, 2009). Nat Biotechnol. 2009;27(5):485.

    Google Scholar 

  • Bao N, Lye KW, Barton MK. MicroRNA binding sites in Arabidopsis class IIIHD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell. 2004;7(5):653–62.

    Article  CAS  PubMed  Google Scholar 

  • Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128(4):669–81.

    Article  CAS  PubMed  Google Scholar 

  • Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, et al. The NIH roadmap epigenomics mapping consortium. Nat Biotechnol. 2010;28(10):1045–8. doi:10.1038/nbt1010-1045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21. doi:10.1101/Gad.947102.

    Article  CAS  PubMed  Google Scholar 

  • Bonasio R, Li QY, Lian JM, Mutti NS, Jin LJ, Zhao HM, et al. Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Curr Biol. 2012;22(19):1755–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourc’his D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature. 2004;431(7004):96–9.

    Article  CAS  PubMed  Google Scholar 

  • Capuano F, Mulleder M, Kok R, Blom HJ, Ralser M. Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species. Anal Chem. 2014;86(8):3697–702. doi:10.1021/ac500447w. Epub 2014 Mar 25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10(5):295–304. doi:10.1038/nrg2540.

    Article  CAS  PubMed  Google Scholar 

  • Chan SWL, Henderson IR, Jacobsen SE. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet. 2005;6(5):351–60.

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Chen Y, Bian C, Fujiki R, Yu X. TET2 promotes histone O-GlcNAcylation during gene transcription. Nature. 2013;493(7433):561–4.

    Article  CAS  PubMed  Google Scholar 

  • Cheung HH, Davis AJ, Lee TL, Pang AL, Nagrani S, Rennert OM, et al. Methylation of an intronic region regulates miR-199a in testicular tumor malignancy. Oncogene. 2011;30(31):3404–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clamp M, Fry B, Kamal M, Xie XH, Cuff J, Lin MF, et al. Distinguishing protein-coding and noncoding genes in the human genome. Proc Natl Acad Sci U S A. 2007;104(49):19428–33. doi:10.1073/pnas.0709013104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delatte B, Jeschke J, Defrance M, Bachman M, Creppe C, Calonne E, et al. Genome-wide hydroxymethylcytosine pattern changes in response to oxidative stress. Sci Rep. 2015;5:12714. doi:10.1038/srep12714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickman MJ, Kucharski R, Maleszka R, Hurd PJ. Extensive histone post-translational modification in honey bees. Insect Biochem Mol Biol. 2013;43(2):125–37. doi:10.1016/j.ibmb.2012.11.003.

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich M, Gamasosa MA, Huang LH, Midgett RM, Kuo KC, Mccune RA, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells. Nucleic Acids Res. 1982;10(8):2709–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng SH, Cokus SJ, Zhang XY, Chen PY, Bostick M, Goll MG, et al. Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci U S A. 2010;107(19):8689–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foret S, Kucharski R, Pellegrini M, Feng SH, Jacobsen SE, Robinson GE, et al. DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proc Natl Acad Sci U S A. 2012;109(13):4968–73. doi:10.1073/pnas.1202392109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foret S, Kucharski R, Pittelkow Y, Lockett GA, Maleszka R. Epigenetic regulation of the honey bee transcriptome: unravelling the nature of methylated genes. BMC Genomics. 2009;10:472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuks F. DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev. 2005;15(5):490–5.

    Article  CAS  PubMed  Google Scholar 

  • Furey TS, Sethupathy P. Genetics driving epigenetics. Science. 2013;342(6159):705–6. doi:10.1126/science.1246755.

    Article  CAS  PubMed  Google Scholar 

  • Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem. 2005;74:481–514. doi:10.1146/annurev.biochem.74.010904.153721.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Arcelus M, Lappalainen T, Montgomery SB, Buil A, Ongen H, Yurovsky A, et al. Passive and active DNA methylation and the interplay with genetic variation in gene regulation, Elife. 2013;2:e00523.

    PubMed  PubMed Central  Google Scholar 

  • Haig D. The (dual) origin of epigenetics. Cold Spring Harb Symp Quant Biol. 2004;69:67–70.

    Article  CAS  PubMed  Google Scholar 

  • Haig D. Commentary: the epidemiology of epigenetics. Int J Epidemiol. 2012;41(1):13–6.

    Article  PubMed  Google Scholar 

  • Halfmann R, Lindquist S. Epigenetics in the extreme: prions and the inheritance of environmentally acquired traits. Science. 2010;330(6004):629–32.

    Article  CAS  PubMed  Google Scholar 

  • Holliday R, Pugh JE. DNA modification mechanisms for control of gene activity during development. Heredity. 1975;35(Aug):149.

    Google Scholar 

  • Huh I, Zeng J, Park T, Yi SV. DNA methylation and transcriptional noise. Epigenetics Chromatin. 2013;6:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jablonka E, Lamb MJ. The changing concept of epigenetics. From epigenesis to epigenetics: the genome in context. Ann NY Acad Sci. 2002;981:82–96.

    Article  PubMed  Google Scholar 

  • Jablonka E, Lamm E. Commentary: the epigenotype-a dynamic network view of development. Int J Epidemiol. 2012;41(1):16–20.

    Article  PubMed  Google Scholar 

  • Jeltsch A, Jurkowska RZ. New concepts in DNA methylation. Trends Biochem Sci. 2014;39(7):310–8.

    Article  CAS  PubMed  Google Scholar 

  • Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.

    Article  CAS  PubMed  Google Scholar 

  • Jones PA, Liang GN. OPINION Rethinking how DNA methylation patterns are maintained. Nat Rev Genet. 2009;10(11):805–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science. 2001;293(5532):1068–70.

    Article  CAS  PubMed  Google Scholar 

  • Jullien PE, Kinoshita T, Ohad N, Berger F. Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell. 2006;18(6):1360–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasowski M, Kyriazopoulou-Panagiotopoulou S, Grubert F, Zaugg JB, Kundaje A, Liu YL, et al. Extensive variation in chromatin states across humans. Science. 2013;342(6159):750–2. doi:10.1126/science.1242510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato M, Miura A, Bender J, Jacobsen SE, Kakutani T. Role of CG and non-CG methylation in immobilization of transposons in arabidopsis. Curr Biol. 2003;13(5):421–6.

    Article  CAS  PubMed  Google Scholar 

  • Kerkel K, Spadola A, Yuan E, Kosek J, Jiang L, Hod E, et al. Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat Genet. 2008;40(7):904–8. doi:10.1038/Ng.174.

    Article  CAS  PubMed  Google Scholar 

  • Kilpinen H, Waszak SM, Gschwind AR, Raghav SK, Witwicki RM, Orioli A, et al. Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription. Science. 2013;342(6159):744–7. doi:10.1126/science.1242463.

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.

    Article  CAS  PubMed  Google Scholar 

  • Kucharski R, Foret S, Maleszka R. EGFR gene methylation is not involved in Royalactin controlled phenotypic polymorphism in honey bees. Sci Rep-Uk. 2015;5:14070. doi:10.1038/srep14070.

    Article  CAS  Google Scholar 

  • Kucharski R, Maleszka J, Foret S, Maleszka R. Nutritional control of reproductive status in honeybees via DNA methylation. Science. 2008;319(5871):1827–30. doi:10.1126/science.1153069.

    Article  CAS  PubMed  Google Scholar 

  • Kucharski R, Maleszka J, Maleszka R. A possible role of DNA methylation in functional divergence of a fast evolving duplicate gene encoding odorant binding protein 11 in the honeybee. Proc Biol Sci. 2016;283(1833):20160558. doi: 10.1098/rspb.2016.0558.

    Google Scholar 

  • Kulis M, Queiros AC, Beekman R, Martin-Subero JI. Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. Bba-Gene Regul Mech. 2013;1829(11):1161–74.

    CAS  Google Scholar 

  • Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landan G, Cohen NM, Mukamel Z, Bar A, Molchadsky A, Brosh R, et al. Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues. Nat Genet. 2012;44(11):1207–14. doi:10.1038/ng.2442.

    Article  CAS  PubMed  Google Scholar 

  • Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993;366(6453):362–5.

    Article  CAS  PubMed  Google Scholar 

  • Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, et al. Global epigenomic reconfiguration during mammalian brain development. Science. 2013;341(6146):629–40. doi:10.1126/science.1237905.

    Article  CAS  Google Scholar 

  • Lorincz MC, Dickerson DR, Schmitt M, Groudine M. Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol. 2004;11(11):1068–75. doi:10.1038/Nsmb840.

    Article  CAS  PubMed  Google Scholar 

  • Lu FL, Liu YT, Jiang L, Yamaguchi S, Zhang Y. Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev. 2014;28(19):2103–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 2007;67(4):1424–9.

    Article  CAS  PubMed  Google Scholar 

  • Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R. The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol. 2010;8(11):e1000506. doi:10.1371/journal.pbio.1000506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyko F, Maleszka R. Insects as innovative models for functional studies of DNA methylation. Trends Genet. 2011;27(4):127–31. doi:10.1016/j.tig.2011.01.003.

    Article  CAS  PubMed  Google Scholar 

  • Maleszka R. Epigenetic integration of environmental and genomic signals in honey bees: the critical interplay of nutritional, brain and reproductive networks. Epigenetics. 2008;3(4):188–92: 6697 [pii].

    Article  PubMed  Google Scholar 

  • Maleszka R. The social honey bee in biomedical research: realities and expectations. Drug Discov Today Dis Models. 2014;12:7–13. doi:10.1016/j.ddmod.2014.06.001.

    Article  Google Scholar 

  • Maleszka R, Mason PH, Barron AB. Epigenomics and the concept of degeneracy in biological systems. Brief Funct Genomics. 2014;13(3):191–202. doi:10.1093/bfgp/elt050.

    Article  PubMed  Google Scholar 

  • Maleszka R. Epigenetic code and insect behavioural plasticity. Curr Opin Insect Sci. 2016;15:45–52. doi:10.1016/j.cois.2016.03.003.

    Google Scholar 

  • Maunakea AK, Chepelev I, Cui KR, Zhao KJ. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res. 2013;23(11):1256–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466(7303):253–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McVicker G, van de Geijn B, Degner JF, Cain CE, Banovich NE, Raj A, et al. Identification of genetic variants that affect histone modifications in human cells. Science. 2013;342(6159):747–9. doi:10.1126/science.1242429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miklos GLG, Maleszka R. Epigenomic communication systems in humans and honey bees: from molecules to behavior. Horm Behav. 2011;59(3):399–406. doi:10.1016/j.yhbeh.2010.05.016.

    Article  Google Scholar 

  • Pastor WA, Aravind L, Rao A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol. 2013;14(6):341–56. doi:10.1038/Nrm3589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regev A, Lamb MJ, Jablonka E. The role of DNA methylation in invertebrates: developmental regulation or genome defense? Mol Biol Evol. 1998;15(7):880–91.

    Article  CAS  Google Scholar 

  • Richards EJ. Opinion – inherited epigenetic variation – revisiting soft inheritance. Nat Rev Genet. 2006;7(5):395–401. doi:10.1038/Nrg1834.

    Article  CAS  PubMed  Google Scholar 

  • Riggs AD. X-inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet. 1975;14(1):9–25.

    Article  CAS  PubMed  Google Scholar 

  • Schilling E, El Chartouni C, Rehli M. Allele-specific DNA methylation in mouse strains is mainly determined by cis-acting sequences. Genome Res. 2009;19(11):2028–35. doi:10.1101/gr.095562.109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubeler D. Epigenetic islands in a genetic ocean. Science. 2012;338(6108):756–7. doi:10.1126/science.1227243.

    Article  CAS  PubMed  Google Scholar 

  • Schultz MD, He YP, Whitaker JW, Hariharan M, Mukamel EA, Leung D, et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature. 2015;523(7559):212–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sha K, Fire A. Imprinting capacity of gamete lineages in Caenorhabditis elegans. Genetics. 2005;170(4):1633–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoemaker R, Deng J, Wang W, Zhang K. Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Res. 2010;20(7):883–9. doi:10.1101/gr.104695.109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011;479(7371):74–9. doi:10.1038/Nature10442.

    Article  CAS  PubMed  Google Scholar 

  • Simola DF, Ye C, Mutti NS, Dolezal K, Bonasio R, Liebig J, et al. A chromatin link to caste identity in the carpenter ant Camponotus floridanus. Genome Res. 2013;23(3):486–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14(3):204–20. doi:10.1038/nrg3354.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9(6):465–76.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki MM, Kerr ARW, De Sousa D, Bird A. CpG methylation is targeted to transcription units in an invertebrate genome. Genome Res. 2007;17(5):625–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takayama S, Dhahbi J, Roberts A, Mao G, Heo SJ, Pachter L, et al. Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity. Genome Res. 2014;24(5):821–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tweedie S, Charlton J, Clark V, Bird A. Methylation of genomes and genes at the invertebrate-vertebrate boundary. Mol Cell Biol. 1997;17(3):1469–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waddington CH. The strategy of the genes. A discussion of some aspects of theoretical biology. London: George Allen & Unwin; 1957. p. 1957.

    Google Scholar 

  • Wagner JR, Busche S, Ge B, Kwan T, Pastinen T, Blanchette M. The relationship between DNA methylation, genetic and expression inter-individual variation in untransformed human fibroblasts. Genome Biol. 2014;15(2):R37. doi:10.1186/gb-2014-15-2-r37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wheeler D, Avery A, Rago A, Choi JH, Colbourne JK, et al. Function and evolution of DNA methylation in Nasonia vitripennis. PLoS Genet. 2013;9(10):e1003872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber M, Schubeler D. Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr Opin Cell Biol. 2007;19(3):273–80.

    Article  CAS  PubMed  Google Scholar 

  • Wedd L, Kucharski R, Maleszka R. Differentially methylated obligatory epialleles modulate context-dependent LAM gene expression in the honey bee Apis mellifera. Epigenetics. 2016;11(1):1–10.

    Article  PubMed  Google Scholar 

  • Wojciechowski M, Rafalski D, Kucharski R, Misztal K, Maleszka J, Bochtler M, et al. Insights into DNA hydroxymethylation in the honeybee from in-depth analyses of TET dioxygenase. Open Biol. 2014;4(8). doi:Unsp 140110.

    Google Scholar 

  • Xiang H, Zhu JD, Chen QA, Dai FY, Li X, Li MW, et al. Single base-resolution methylome of the silkworm reveals a sparse epigenomic map (vol 28, pg 516, 2010). Nat Biotechnol. 2010;28(7):756.

    Google Scholar 

  • Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 2010;328(5980):916–9. doi:10.1126/science.1186366.

    Article  CAS  PubMed  Google Scholar 

  • Zhang GQ, Huang H, Liu D, Cheng Y, Liu XL, Zhang WX, et al. N-6-methyladenine DNA modification in Drosophila. Cell. 2015;161(4):893–906.

    Article  CAS  PubMed  Google Scholar 

  • Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet. 2007;39(1):61–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Maleszka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wedd, L., Maleszka, R. (2016). DNA Methylation and Gene Regulation in Honeybees: From Genome-Wide Analyses to Obligatory Epialleles. In: Jeltsch, A., Jurkowska, R. (eds) DNA Methyltransferases - Role and Function. Advances in Experimental Medicine and Biology, vol 945. Springer, Cham. https://doi.org/10.1007/978-3-319-43624-1_9

Download citation

Publish with us

Policies and ethics