Advertisement

AMPK and Cancer

  • Zhiyu WangEmail author
  • Neng Wang
  • Pengxi Liu
  • Xiaoming Xie
Chapter
Part of the Experientia Supplementum book series (EXS, volume 107)

Abstract

This chapter focuses on the role of AMPK as a stress-response molecule with an emphasis on its duplex implication in carcinogenesis and cancer drug resistance. AMPK is closely correlated to the tumor-suppressive functions of LKB1 and P53, consequently modulating the activity of cellular survival signaling such as mTOR and Akt, leading to cell growth inhibition and cell cycle arrest. On the contrary, AMPK is tightly involved in cancer drug resistance via interacting with multiple known mechanisms of chemoresistance such as ABCG2 expression, autophagy induction, and cancer stem cells enrichment. Targeting AMPK has become a novel strategy for cancer prevention and treatment.

Keywords

AMPK Carcinogenesis Cancer drug resistance Stress-response Cancer prevetion 

Notes

Conflict of Interests

No potential conflicts of interest exist.

Acknowledgements This work was supported by the National Natural Science Foundation of China (81402173 and 81573651) and Pearl River S&T Nova Program of Guangzhou (201506010098).

References

  1. Accordi B, Galla L, Milani G et al (2013) AMPK inhibition enhances apoptosis in MLL-rearranged pediatric B-acute lymphoblastic leukemia cells. Leukemia 27(5):1019–1027PubMedCrossRefGoogle Scholar
  2. Adamovich Y, Adler J, Meltser V, Reuven N, Shaul Y (2014) AMPK couples p73 with p53 in cell fate decision. Cell Death Differ 21:1451–1459PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ahmed KM, Li JJ (2007) ATM-NF-kappaB connection as a target for tumor radiosensitization. Curr Cancer Drug Targets 7:335–342PubMedPubMedCentralCrossRefGoogle Scholar
  4. Anisimov VN, Egormin PA, Bershtein LM et al (2005) Metformin decelerates aging and development of mammary tumors in HER-2/neu transgenic mice. Bull Exp Biol Med 139(6):721–723PubMedCrossRefGoogle Scholar
  5. Antico Arciuch VG, Russo MA, Kang KS, Di Cristofano A (2013) Inhibition of AMPK and Krebs cycle gene expression drives metabolic remodeling of Pten-deficient preneoplastic thyroid cells. Cancer Res 73:5459–5472PubMedPubMedCentralCrossRefGoogle Scholar
  6. Banerjee S, Buhrlage SJ, Huang HT, Deng X, Zhou W, Wang J, Traynor R, Prescott AR, Alessi DR, Gray NS (2014) Characterization of WZ4003 and HTH-01-015 as selective inhibitors of the LKB1-tumour-suppressor-activated NUAK kinases. Biochem J 457(1):215–225PubMedCrossRefGoogle Scholar
  7. Buckendahl AC, Budczies J, Fiehn O et al (2011) Prognostic impact of AMP-activated protein kinase expression in ovarian carcinoma: correlation of protein expression and GC/TOF-MS-based metabolomics. Oncol Rep 25:1005–1012PubMedGoogle Scholar
  8. Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134(3):451–460PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cantor JR, Sabatini DM (2012) Cancer cell metabolism: one hallmark, many faces. Cancer Discov 2(10):881–898PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cao X, Fang L, Gibbs S et al (2007) Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia. Cancer Chemother Pharmacol 59:495–505PubMedCrossRefGoogle Scholar
  11. Carretero J, Medina PP, Blanco R et al (2007) Dysfunctional AMPK activity, signaling through mTOR and survival in response to energetic stress in LKB1-deficient lung cancer. Oncogene 26(11):1616–1625PubMedCrossRefGoogle Scholar
  12. Chan EY (2009) mTORC1 phosphorylates the ULK1-mAtg13-FIP200 autophagy regulatory complex. Sci Signal 2(84), e51CrossRefGoogle Scholar
  13. Chang Z, Huo L, Li K, Wu Y, Hu Z (2014) Blocked autophagy by miR-101 enhances osteosarcoma cell chemosensitivity in vitro. Sci World J 2014:794756Google Scholar
  14. Connolly DC, Katabuchi H, Cliby WA, Cho KR (2000) Somatic mutations in the STK11/LKB1 gene are uncommon in rare gynecological tumor types associated with Peutz-Jegher's syndrome. Am J Pathol 156(1):339–345PubMedPubMedCentralCrossRefGoogle Scholar
  15. Corominas-Faja B, Cufí S, Oliveras-Ferraros C et al (2013) Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway. Cell Cycle 12:3109–3124PubMedPubMedCentralCrossRefGoogle Scholar
  16. Dai RY, Zhao XF, Li JJ et al (2013) Implication of transcriptional repression in compound C-induced apoptosis in cancer cells. Cell Death Dis 4, e883PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dean M (2009) ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia 14(1):3–9PubMedCrossRefGoogle Scholar
  18. Diogo CV, Machado NG, Barbosa IA et al (2011) Berberine as a promising safe anti-cancer agent - is there a role for mitochondria? Curr Drug Targets 12(6):850–859PubMedCrossRefGoogle Scholar
  19. Dong D, Ko B, Baumeister P et al (2005) Vascular targeting and antiangiogenesis agents induce drug resistance effector GRP78 within the tumor microenvironment. Cancer Res 65:5785–5791PubMedCrossRefGoogle Scholar
  20. Ferlay J, Soerjomataram I, Ervik M, et al (2012) GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer. Available from http://globocan.iarc.fr
  21. Ferreira LM (2010) Cancer metabolism: the Warburg effect today. Exp Mol Pathol 89:372–380PubMedCrossRefGoogle Scholar
  22. Geng SQ, Alexandrou AT, Li JJ (2014) Breast cancer stem cells: Multiple capacities in tumor metastasis. Cancer Lett 349:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  23. Giardiello FM, Brensinger JD, Tersmette AC et al (2000) Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology 119(6):1447–1453PubMedCrossRefGoogle Scholar
  24. Gledhill JR, Montgomery MG, Leslie AG, Walker JE (2007) Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc Natl Acad Sci U S A 104:13632–13637PubMedPubMedCentralCrossRefGoogle Scholar
  25. Green AS, Chapuis N, Lacombe C et al (2011) LKB1/AMPK/mTOR signaling pathway in hematological malignancies: from metabolism to cancer cell biology. Cell Cycle 10:2115–2120PubMedCrossRefGoogle Scholar
  26. Greer EL, Oskoui PR, Banko MR et al (2007) The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem 282(41):30107–30119PubMedCrossRefGoogle Scholar
  27. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22PubMedCrossRefGoogle Scholar
  28. Gwinn DM, Shackelford DB, Egan DF et al (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30(2):214–226PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hadad SM, Baker L, Quinlan PR et al (2009) Histological evaluation of AMPK signalling in primary breast cancer. BMC Cancer 1(9):307CrossRefGoogle Scholar
  30. Handa N, Takagi T, Saijo S et al (2011) Structural basis for compound C inhibition of the human AMP-activated protein kinase α2 subunit kinase domain. Acta Crystallogr D Biol Crystallogr 67(Pt 5):480–487PubMedCrossRefGoogle Scholar
  31. Hardie DG (2004) The AMP-activated protein kinase pathway--new players upstream and downstream. J Cell Sci 117(Pt 23):5479–5487PubMedCrossRefGoogle Scholar
  32. Hardie DG (2013) AMPK: a target for drugs and natural products with effects on both diabetes and cancer. Diabetes 62:2164–2172PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hardie DG (2014) AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Curr Opin Cell Biol 33C:1–7Google Scholar
  34. Hardie DG, Alessi DR (2013) LKB1 and AMPK and the cancer-metabolism link - ten years after. BMC Biol 11:36PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hawley SA, Pan DA, Mustard KJ et al (2005) Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2:9–19PubMedCrossRefGoogle Scholar
  36. Hemminki A, Tomlinson I, Markie D et al (1997) Localization of a susceptibility locus for Peutz-Jeghers syndrome to 19p using comparative genomic hybridization and targeted linkage analysis. Nat Genet 15(1):87–90PubMedCrossRefGoogle Scholar
  37. Hemminki A, Avizienyte E, Roth S et al (1998) A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Duodecim 114(7):667–668PubMedGoogle Scholar
  38. Herrero-Martín G, Høyer-Hansen M, García-García C et al (2009) TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 28(6):677–685PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hindupur SK, Balaji SA, Saxena M et al (2014) Identification of a novel AMPK-PEA15 axis in the anoikis-resistant growth of mammary cells. Breast Cancer Res 16:420PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hosono K, Endo H, Takahashi H et al (2010) Metformin suppresses colorectal aberrant crypt foci in a short-term clinical trial. Cancer Prev Res (Phila) 3(9):1077–1083CrossRefGoogle Scholar
  41. Hulleman E, Kazemier KM, Holleman A et al (2009) Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells. Blood 113:2014–2021PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hurley RL, Anderson KA, Franzone JM et al (2005) The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 280:29060–29066PubMedCrossRefGoogle Scholar
  43. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590PubMedCrossRefGoogle Scholar
  44. Jeon SM, Chandel NS, Hay N (2012) AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485:661–665PubMedPubMedCentralCrossRefGoogle Scholar
  45. Jiralerspong S, Palla SL, Giordano SH et al (2009) Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol 27:3297–3302PubMedPubMedCentralCrossRefGoogle Scholar
  46. Jones RG, Plas DR, Kubek S et al (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18(3):283–293PubMedCrossRefGoogle Scholar
  47. Kasznicki J, Sliwinska A, Drzewoski J (2014) Metformin in cancer prevention and therapy. Ann Transl Med 2(6):57PubMedPubMedCentralGoogle Scholar
  48. Kim JW, Dang CV (2006) Cancer's molecular sweet tooth and the Warburg effect. Cancer Res 66:8927–8930PubMedCrossRefGoogle Scholar
  49. Kim CJ, Cho YG, Park JY et al (2004) Genetic analysis of the LKB1/STK11 gene in hepatocellular carcinomas. Eur J Cancer 40(1):136–141PubMedCrossRefGoogle Scholar
  50. Kim HS, Hwang JT, Yun H et al (2008) Inhibition of AMP-activated protein kinase sensitizes cancer cells to cisplatin-induced apoptosis via hyper-induction of p53. J Biol Chem 283(7):3731–3742PubMedCrossRefGoogle Scholar
  51. Kim J, Kundu M, Viollet B, Guan KL (2011a) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kim YM, Kim MY, Kim HJ et al (2011b) Compound C independent of AMPK inhibits ICAM-1 and VCAM-1 expression in inflammatory stimulants-activated endothelial cells in vitro and in vivo. Atherosclerosis 219(1):57–64PubMedCrossRefGoogle Scholar
  53. Kim YH, Liang H, Liu X et al (2012) AMPKα modulation in cancer progression: multilayer integrative analysis of the whole transcriptome in Asian gastric cancer. Cancer Res 72:2512–2521PubMedCrossRefGoogle Scholar
  54. Kim TH, Suh DH, Kim MK, Song YS (2014) Metformin against cancer stem cells through the modulation of energy metabolism: special considerations on ovarian cancer. Biomed Res Int 2014:132702PubMedPubMedCentralGoogle Scholar
  55. Książkiewicz M, Markiewicz A, Zaczek AJ (2012) Epithelial-mesenchymal transition: a hallmark in metastasis formation linking circulating tumor cells and cancer stem cells. Pathobiology 79:195–208PubMedCrossRefGoogle Scholar
  56. Le A, Cooper CR, Gouw AM et al (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A 107(5):2037–2042PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lee H, Park HJ, Park CS et al (2014) Response of breast cancer cells and cancer stem cells to metformin and hyperthermia alone or combined. PLoS One 9(2), e87979PubMedPubMedCentralCrossRefGoogle Scholar
  58. Levy JM, Thompson JC, Griesinger AM et al (2014) Autophagy inhibition improves chemosensitivity in BRAF(V600E) brain tumors. Cancer Discov 4:773–780PubMedPubMedCentralCrossRefGoogle Scholar
  59. Li D, Yeung SC, Hassan MM, Konopleva M, Abbruzzese JL (2009) Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology 137(2):482–488PubMedPubMedCentralCrossRefGoogle Scholar
  60. Li C, Liu VW, Chiu PM, Chan DW, Ngan HY (2012) Over-expressions of AMPK subunits in ovarian carcinomas with significant clinical implications. BMC Cancer 12:357PubMedPubMedCentralCrossRefGoogle Scholar
  61. Li W, Saud SM, Young MR, Chen G, Hua B (2015) Targeting AMPK for cancer prevention and treatment. Oncotarget 6(10):7365–7378PubMedPubMedCentralCrossRefGoogle Scholar
  62. Liang J, Shao SH, Xu ZX et al (2007) The energy sensing LKB1–AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9(2):218–224PubMedCrossRefGoogle Scholar
  63. Libby G, Donnelly LA, Donnan PT et al (2009) New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care 32(9):1620–1625PubMedPubMedCentralCrossRefGoogle Scholar
  64. Liu Y, Cao Y, Zhang W et al (2012) A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther 11:1672–1682PubMedCrossRefGoogle Scholar
  65. Lizcano JM, Göransson O, Toth R et al (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 23:833–843PubMedPubMedCentralCrossRefGoogle Scholar
  66. Löffler AS, Alers S, Dieterle AM et al (2011) Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy 7:696–706PubMedCrossRefGoogle Scholar
  67. Luo Z, Saha AK, Xiang X, Ruderman NB (2005) AMPK, the metabolic syndrome and cancer. Trends Pharmacol Sci 26(2):69–76PubMedCrossRefGoogle Scholar
  68. Mao K, Klionsky DJ (2011) AMPK activates autophagy by phosphorylating ULK1. Circ Res 108:787–788PubMedPubMedCentralCrossRefGoogle Scholar
  69. Maugeri-Saccà M, Vigneri P, De Maria R (2011) Cancer stem cells and chemosensitivity. Clin Cancer Res 17:4942–4947PubMedCrossRefGoogle Scholar
  70. Mendoza EE, Pocceschi MG, Kong X et al (2012) Control of Glycolytic Flux by AMP-Activated Protein Kinase in Tumor Cells Adapted to Low pH. Transl Oncol 5:208–216PubMedPubMedCentralCrossRefGoogle Scholar
  71. Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13:1016–1023PubMedPubMedCentralCrossRefGoogle Scholar
  72. Mouradian M, Kikawa KD, Dranka BP et al (2014) Docosahexaenoic acid attenuates breast cancer cell metabolism and the Warburg phenotype by targeting bioenergetic function. Mol Carcinog. doi: 10.1002/mc.22151 PubMedGoogle Scholar
  73. Nakanishi C, Yamaguchi T, Iijima T et al (2004) Germline mutation of the LKB1/STK11 gene with loss of the normal allele in an aggressive breast cancer of Peutz-Jeghers syndrome. Oncology 67(5-6):476–479PubMedCrossRefGoogle Scholar
  74. Nam M, Lee WH, Bae EJ, Kim SG (2008) Compound C inhibits clonal expansion of preadipocytes by increasing p21 level irrespectively of AMPK inhibition. Arch Biochem Biophys 479:74–81PubMedCrossRefGoogle Scholar
  75. Neumeister V, Agarwal S, Bordeaux J, Camp RL, Rimm DL (2010) In situ identification of putative cancer stem cells by multiplexing ALDH1, CD44, and cytokeratin identifies breast cancer patients with poor prognosis. Am J Pathol 176:2131–2138PubMedPubMedCentralCrossRefGoogle Scholar
  76. Nishino Y, Miura T, Miki T et al (2004) Ischemic preconditioning activates AMPK in a PKC-dependent manner and induces GLUT4 up-regulation in the late phase of cardioprotection. Cardiovasc Res 61(3):610–619PubMedCrossRefGoogle Scholar
  77. Ouyang J, Parakhia RA, Ochs RS (2011) Metformin activates AMP kinase through inhibition of AMP deaminase. J Biol Chem 286(1):1–11PubMedCrossRefGoogle Scholar
  78. Owen MR, Doran E, Halestrap AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348(Pt 3):607–614PubMedPubMedCentralCrossRefGoogle Scholar
  79. Park HU, Suy S, Danner M et al (2009) AMP-activated protein kinase promotes human prostate cancer cell growth and survival. Mol Cancer Ther 8:733–741PubMedPubMedCentralCrossRefGoogle Scholar
  80. Pazarentzos E, Bivona TG (2015) Adaptive stress signaling in targeted cancer therapy resistance. Oncogene 34(45):5599–5606PubMedPubMedCentralCrossRefGoogle Scholar
  81. Sakamoto K, McCarthy A, Smith D et al (2005) Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J 24:1810–1820PubMedPubMedCentralCrossRefGoogle Scholar
  82. Sanli T, Steinberg GR, Singh G, Tsakiridis T (2014) AMP-activated protein kinase (AMPK) beyond metabolism: a novel genomic stress sensor participating in the DNA damage response pathway. Cancer Biol Ther 15:156–169PubMedCrossRefGoogle Scholar
  83. Sato N, Rosty C, Jansen M et al (2001) STK11/LKB1 Peutz-Jeghers gene inactivation in intraductal papillary-mucinous neoplasms of the pancreas. Am J Pathol 159(6):2017–2022PubMedPubMedCentralCrossRefGoogle Scholar
  84. Sato A, Sunayama J, Okada M et al (2012) Glioma-initiating cell elimination by metformin activation of FOXO3 via AMPK. Stem Cells Transl Med 1:811–824PubMedPubMedCentralCrossRefGoogle Scholar
  85. Sauer H, Engel S, Milosevic N, Sharifpanah F, Wartenberg M (2012) Activation of AMP-kinase by AICAR induces apoptosis of DU-145 prostate cancer cells through generation of reactive oxygen species and activation of c-Jun N-terminal kinase. Int J Oncol 40:501–508PubMedGoogle Scholar
  86. Shackelford DB, Abt E, Gerken L et al (2013) LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 23:143–158PubMedPubMedCentralCrossRefGoogle Scholar
  87. Shaw RJ, Cantley LC (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441:424–430PubMedCrossRefGoogle Scholar
  88. Shaw RJ, Lamia KA, Vasquez D et al (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310:1642–1646PubMedPubMedCentralCrossRefGoogle Scholar
  89. Shell SA, Lyass L, Trusk PB et al (2008) Activation of AMPK is necessary for killing cancer cells and sparing cardiac cells. Cell Cycle 7(12):1769–1775PubMedCrossRefGoogle Scholar
  90. Shi HS, Li D, Zhang J et al (2010) Silencing of pkm2 increases the efficacy of docetaxel in human lung cancer xenografts in mice. Cancer Sci 101:1447–1453PubMedCrossRefGoogle Scholar
  91. Shi L, Qin N, Hu L et al (2011) Tiliroside-derivatives enhance GLUT4 translocation via AMPK in muscle cells. Diabetes Res Clin Pract 92:e41–e46PubMedCrossRefGoogle Scholar
  92. Shirwany NA, Zou MH (2014a) AMPK: a cellular metabolic and redox sensor. A minireview. Front Biosci 19:447–474CrossRefGoogle Scholar
  93. Shirwany NA, Zou MH (2014b) AMPK: a cellular metabolic and redox sensor. A minireview. Front Biosci (Landmark Ed) 19:447–474CrossRefGoogle Scholar
  94. Short JD, Dere R, Houston KD et al (2010) AMPK-mediated phosphorylation of murine p27 at T197 promotes binding of 14-3-3 proteins and increases p27 stability. Mol Carcinog 49:429–439PubMedGoogle Scholar
  95. Snima KS, Pillai P, Cherian AM, Nair SV, Lakshmanan VK (2014) Anti-diabetic drug metformin: challenges and perspectives for cancer therapy. Curr Cancer Drug Targets 14(8):727–736PubMedCrossRefGoogle Scholar
  96. Sui X, Chen R, Wang Z et al (2013) Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis 4, e838PubMedPubMedCentralCrossRefGoogle Scholar
  97. Tao R, Gong J, Luo X, Zang M, Guo W, Wen R, Luo Z (2010) AMPK exerts dual regulatory effects on the PI3K pathway. J Mol Signal 5:1PubMedPubMedCentralCrossRefGoogle Scholar
  98. Tirino V, Desiderio V, Paino F et al (2013) Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. FASEB J 27:13–24PubMedCrossRefGoogle Scholar
  99. Tripathi DN, Chowdhury R, Trudel LJ et al (2013) Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1. Proc Natl Acad Sci U S A 110:E2950–E2957PubMedPubMedCentralCrossRefGoogle Scholar
  100. Venkatesha VA, Parsels LA, Parsels JD et al (2012) Sensitization of pancreatic cancer stem cells to gemcitabine by Chk1 inhibition. Neoplasia 14:519–525PubMedPubMedCentralCrossRefGoogle Scholar
  101. Vucicevic L, Misirkic M, Janjetovic K et al (2009) AMP-activated protein kinase-dependent and -independent mechanisms underlying in vitro antiglioma action of compound C. Biochem Pharmacol 77(11):1684–1693PubMedCrossRefGoogle Scholar
  102. Vucicevic L, Misirkic M, Janjetovic K et al (2011) Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway. Autophagy 7(1):40–50PubMedCrossRefGoogle Scholar
  103. Wan Z, Root-McCaig J, Castellani L et al (2014) Evidence for the role of AMPK in regulating PGC-1 alpha expression and mitochondrial proteins in mouse epididymal adipose tissue. Obesity (Silver Spring) 22:730–738CrossRefGoogle Scholar
  104. Wang ZY, Loo TY, Shen JG et al (2012) LDH-A silencing suppresses breast cancer tumorigenicity through induction of oxidative stress mediated mitochondrial pathway apoptosis. Breast Cancer Res Treat 131(3):791–800PubMedCrossRefGoogle Scholar
  105. Wang Z, Wang N, Liu P et al (2014) MicroRNA-25 regulates chemoresistance-associated autophagy in breast cancer cells, a process modulated by the natural autophagy inducer isoliquiritigenin. Oncotarget 5:7013–7026PubMedPubMedCentralCrossRefGoogle Scholar
  106. Wu CA, Chao Y, Shiah SG, Lin WW (2013) Nutrient deprivation induces the Warburg effect through ROS/AMPK-dependent activation of pyruvate dehydrogenase kinase. Biochim Biophys Acta 1833:1147–1156PubMedCrossRefGoogle Scholar
  107. Xiao B, Sanders MJ, Underwood E et al (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472:230–233PubMedPubMedCentralCrossRefGoogle Scholar
  108. Xiao X, He Q, Lu C et al (2012) Metformin impairs the growth of liver kinase B1-intact cervical cancer cells. Gynecol Oncol 127:249–255PubMedPubMedCentralCrossRefGoogle Scholar
  109. Xie M, Zhang D, Dyck JR et al (2006) A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc Natl Acad Sci U S A 103:17378–17383PubMedPubMedCentralCrossRefGoogle Scholar
  110. Xin H, Kong Y, Jiang X et al (2013) Multi-drug-resistant cells enriched from chronic myeloid leukemia cells by Doxorubicin possess tumor-initiating-cell properties. J Pharmacol Sci 122:299–304PubMedCrossRefGoogle Scholar
  111. Xu J, Ji J, Yan XH (2012) Cross-talk between AMPK and mTOR in regulating energy balance. Crit Rev Food Sci Nutr 52:373–381PubMedCrossRefGoogle Scholar
  112. Yan M, Gingras MC, Dunlop EA et al (2014) The tumor suppressor folliculin regulates AMPK-dependent metabolic transformation. J Clin Invest 124:2640–2650PubMedPubMedCentralCrossRefGoogle Scholar
  113. Yang W, Hong YH, Shen XQ, Frankowski C, Camp HS, Leff T (2001) Regulation of transcription by AMP activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors. J Biol Chem 276(42):38341–38344PubMedCrossRefGoogle Scholar
  114. Yoon JH, Ahn SG, Lee BH, Jung SH, Oh SH (2012) Role of autophagy in chemoresistance: regulation of the ATM-mediated DNA-damage signaling pathway through activation of DNA-PKcs and PARP-1. Biochem Pharmacol 83:747–757PubMedCrossRefGoogle Scholar
  115. Yu L, Yang SJ (2010) AMP-activated protein kinase mediates activity-dependent regulation of peroxisome proliferator-activated receptor gamma coactivator-1alpha and nuclear respiratory factor 1 expression in rat visual cortical neurons. Neuroscience 169:23–38PubMedCrossRefGoogle Scholar
  116. Yu F, Yao H, Zhu P et al (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131:1109–1123PubMedCrossRefGoogle Scholar
  117. Zhang L, Wang S, Wangtao et al (2009) Upregulation of GRP78 and GRP94 and its function in chemotherapy resistance to VP-16 in human lung cancer cell line SK-MES-1. Cancer Invest 27(4):453–458PubMedCrossRefGoogle Scholar
  118. Zhao M, Klionsky DJ (2011) AMPK-dependent phosphorylation of ULK1 induces autophagy. Cell Metab 13(2):119–120PubMedPubMedCentralCrossRefGoogle Scholar
  119. Zhao Y, Liu H, Liu Z et al (2011) Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism. Cancer Res 71(13):4585–4597PubMedPubMedCentralCrossRefGoogle Scholar
  120. Zhou J, Huang W, Tao R et al (2009) Inactivation of AMPK alters gene expression and promotes growth of prostate cancer cells. Oncogene 28(18):1993–2002PubMedPubMedCentralCrossRefGoogle Scholar
  121. Zhou M, Zhao Y, Ding Y et al (2010) Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol Cancer 9:33PubMedPubMedCentralCrossRefGoogle Scholar
  122. Zou Z, Yuan Z, Zhang Q et al (2012) Aurora kinase A inhibition-induced autophagy triggers drug resistance in breast cancer cells. Autophagy 8(12):1798–1810PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Zhiyu Wang
    • 1
    Email author
  • Neng Wang
    • 2
  • Pengxi Liu
    • 1
  • Xiaoming Xie
    • 2
  1. 1.Department of Mammary DiseaseGuangdong Provincial Hospital of Chinese Medicine, The Second Clinical Collage of Guangzhou University of Chinese MedicineGuangzhouChina
  2. 2.Department of Breast OncologySun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouChina

Personalised recommendations