Skip to main content

AMPK and Cancer

  • Chapter
  • First Online:

Part of the book series: Experientia Supplementum ((EXS,volume 107))

Abstract

This chapter focuses on the role of AMPK as a stress-response molecule with an emphasis on its duplex implication in carcinogenesis and cancer drug resistance. AMPK is closely correlated to the tumor-suppressive functions of LKB1 and P53, consequently modulating the activity of cellular survival signaling such as mTOR and Akt, leading to cell growth inhibition and cell cycle arrest. On the contrary, AMPK is tightly involved in cancer drug resistance via interacting with multiple known mechanisms of chemoresistance such as ABCG2 expression, autophagy induction, and cancer stem cells enrichment. Targeting AMPK has become a novel strategy for cancer prevention and treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Accordi B, Galla L, Milani G et al (2013) AMPK inhibition enhances apoptosis in MLL-rearranged pediatric B-acute lymphoblastic leukemia cells. Leukemia 27(5):1019–1027

    Article  CAS  PubMed  Google Scholar 

  • Adamovich Y, Adler J, Meltser V, Reuven N, Shaul Y (2014) AMPK couples p73 with p53 in cell fate decision. Cell Death Differ 21:1451–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed KM, Li JJ (2007) ATM-NF-kappaB connection as a target for tumor radiosensitization. Curr Cancer Drug Targets 7:335–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anisimov VN, Egormin PA, Bershtein LM et al (2005) Metformin decelerates aging and development of mammary tumors in HER-2/neu transgenic mice. Bull Exp Biol Med 139(6):721–723

    Article  CAS  PubMed  Google Scholar 

  • Antico Arciuch VG, Russo MA, Kang KS, Di Cristofano A (2013) Inhibition of AMPK and Krebs cycle gene expression drives metabolic remodeling of Pten-deficient preneoplastic thyroid cells. Cancer Res 73:5459–5472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee S, Buhrlage SJ, Huang HT, Deng X, Zhou W, Wang J, Traynor R, Prescott AR, Alessi DR, Gray NS (2014) Characterization of WZ4003 and HTH-01-015 as selective inhibitors of the LKB1-tumour-suppressor-activated NUAK kinases. Biochem J 457(1):215–225

    Article  CAS  PubMed  Google Scholar 

  • Buckendahl AC, Budczies J, Fiehn O et al (2011) Prognostic impact of AMP-activated protein kinase expression in ovarian carcinoma: correlation of protein expression and GC/TOF-MS-based metabolomics. Oncol Rep 25:1005–1012

    PubMed  Google Scholar 

  • Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134(3):451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantor JR, Sabatini DM (2012) Cancer cell metabolism: one hallmark, many faces. Cancer Discov 2(10):881–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao X, Fang L, Gibbs S et al (2007) Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia. Cancer Chemother Pharmacol 59:495–505

    Article  CAS  PubMed  Google Scholar 

  • Carretero J, Medina PP, Blanco R et al (2007) Dysfunctional AMPK activity, signaling through mTOR and survival in response to energetic stress in LKB1-deficient lung cancer. Oncogene 26(11):1616–1625

    Article  CAS  PubMed  Google Scholar 

  • Chan EY (2009) mTORC1 phosphorylates the ULK1-mAtg13-FIP200 autophagy regulatory complex. Sci Signal 2(84), e51

    Article  Google Scholar 

  • Chang Z, Huo L, Li K, Wu Y, Hu Z (2014) Blocked autophagy by miR-101 enhances osteosarcoma cell chemosensitivity in vitro. Sci World J 2014:794756

    Google Scholar 

  • Connolly DC, Katabuchi H, Cliby WA, Cho KR (2000) Somatic mutations in the STK11/LKB1 gene are uncommon in rare gynecological tumor types associated with Peutz-Jegher's syndrome. Am J Pathol 156(1):339–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corominas-Faja B, Cufí S, Oliveras-Ferraros C et al (2013) Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway. Cell Cycle 12:3109–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai RY, Zhao XF, Li JJ et al (2013) Implication of transcriptional repression in compound C-induced apoptosis in cancer cells. Cell Death Dis 4, e883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dean M (2009) ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia 14(1):3–9

    Article  PubMed  Google Scholar 

  • Diogo CV, Machado NG, Barbosa IA et al (2011) Berberine as a promising safe anti-cancer agent - is there a role for mitochondria? Curr Drug Targets 12(6):850–859

    Article  CAS  PubMed  Google Scholar 

  • Dong D, Ko B, Baumeister P et al (2005) Vascular targeting and antiangiogenesis agents induce drug resistance effector GRP78 within the tumor microenvironment. Cancer Res 65:5785–5791

    Article  CAS  PubMed  Google Scholar 

  • Ferlay J, Soerjomataram I, Ervik M, et al (2012) GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer. Available from http://globocan.iarc.fr

  • Ferreira LM (2010) Cancer metabolism: the Warburg effect today. Exp Mol Pathol 89:372–380

    Article  CAS  PubMed  Google Scholar 

  • Geng SQ, Alexandrou AT, Li JJ (2014) Breast cancer stem cells: Multiple capacities in tumor metastasis. Cancer Lett 349:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giardiello FM, Brensinger JD, Tersmette AC et al (2000) Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology 119(6):1447–1453

    Article  CAS  PubMed  Google Scholar 

  • Gledhill JR, Montgomery MG, Leslie AG, Walker JE (2007) Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc Natl Acad Sci U S A 104:13632–13637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green AS, Chapuis N, Lacombe C et al (2011) LKB1/AMPK/mTOR signaling pathway in hematological malignancies: from metabolism to cancer cell biology. Cell Cycle 10:2115–2120

    Article  CAS  PubMed  Google Scholar 

  • Greer EL, Oskoui PR, Banko MR et al (2007) The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem 282(41):30107–30119

    Article  CAS  PubMed  Google Scholar 

  • Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22

    Article  CAS  PubMed  Google Scholar 

  • Gwinn DM, Shackelford DB, Egan DF et al (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30(2):214–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadad SM, Baker L, Quinlan PR et al (2009) Histological evaluation of AMPK signalling in primary breast cancer. BMC Cancer 1(9):307

    Article  CAS  Google Scholar 

  • Handa N, Takagi T, Saijo S et al (2011) Structural basis for compound C inhibition of the human AMP-activated protein kinase α2 subunit kinase domain. Acta Crystallogr D Biol Crystallogr 67(Pt 5):480–487

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG (2004) The AMP-activated protein kinase pathway--new players upstream and downstream. J Cell Sci 117(Pt 23):5479–5487

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG (2013) AMPK: a target for drugs and natural products with effects on both diabetes and cancer. Diabetes 62:2164–2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie DG (2014) AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Curr Opin Cell Biol 33C:1–7

    Google Scholar 

  • Hardie DG, Alessi DR (2013) LKB1 and AMPK and the cancer-metabolism link - ten years after. BMC Biol 11:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawley SA, Pan DA, Mustard KJ et al (2005) Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2:9–19

    Article  CAS  PubMed  Google Scholar 

  • Hemminki A, Tomlinson I, Markie D et al (1997) Localization of a susceptibility locus for Peutz-Jeghers syndrome to 19p using comparative genomic hybridization and targeted linkage analysis. Nat Genet 15(1):87–90

    Article  CAS  PubMed  Google Scholar 

  • Hemminki A, Avizienyte E, Roth S et al (1998) A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Duodecim 114(7):667–668

    CAS  PubMed  Google Scholar 

  • Herrero-Martín G, Høyer-Hansen M, García-García C et al (2009) TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 28(6):677–685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hindupur SK, Balaji SA, Saxena M et al (2014) Identification of a novel AMPK-PEA15 axis in the anoikis-resistant growth of mammary cells. Breast Cancer Res 16:420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hosono K, Endo H, Takahashi H et al (2010) Metformin suppresses colorectal aberrant crypt foci in a short-term clinical trial. Cancer Prev Res (Phila) 3(9):1077–1083

    Article  CAS  Google Scholar 

  • Hulleman E, Kazemier KM, Holleman A et al (2009) Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells. Blood 113:2014–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurley RL, Anderson KA, Franzone JM et al (2005) The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 280:29060–29066

    Article  CAS  PubMed  Google Scholar 

  • Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590

    Article  CAS  PubMed  Google Scholar 

  • Jeon SM, Chandel NS, Hay N (2012) AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485:661–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiralerspong S, Palla SL, Giordano SH et al (2009) Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol 27:3297–3302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones RG, Plas DR, Kubek S et al (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18(3):283–293

    Article  CAS  PubMed  Google Scholar 

  • Kasznicki J, Sliwinska A, Drzewoski J (2014) Metformin in cancer prevention and therapy. Ann Transl Med 2(6):57

    PubMed  PubMed Central  Google Scholar 

  • Kim JW, Dang CV (2006) Cancer's molecular sweet tooth and the Warburg effect. Cancer Res 66:8927–8930

    Article  CAS  PubMed  Google Scholar 

  • Kim CJ, Cho YG, Park JY et al (2004) Genetic analysis of the LKB1/STK11 gene in hepatocellular carcinomas. Eur J Cancer 40(1):136–141

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Hwang JT, Yun H et al (2008) Inhibition of AMP-activated protein kinase sensitizes cancer cells to cisplatin-induced apoptosis via hyper-induction of p53. J Biol Chem 283(7):3731–3742

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kundu M, Viollet B, Guan KL (2011a) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YM, Kim MY, Kim HJ et al (2011b) Compound C independent of AMPK inhibits ICAM-1 and VCAM-1 expression in inflammatory stimulants-activated endothelial cells in vitro and in vivo. Atherosclerosis 219(1):57–64

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Liang H, Liu X et al (2012) AMPKα modulation in cancer progression: multilayer integrative analysis of the whole transcriptome in Asian gastric cancer. Cancer Res 72:2512–2521

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Suh DH, Kim MK, Song YS (2014) Metformin against cancer stem cells through the modulation of energy metabolism: special considerations on ovarian cancer. Biomed Res Int 2014:132702

    PubMed  PubMed Central  Google Scholar 

  • Książkiewicz M, Markiewicz A, Zaczek AJ (2012) Epithelial-mesenchymal transition: a hallmark in metastasis formation linking circulating tumor cells and cancer stem cells. Pathobiology 79:195–208

    Article  PubMed  Google Scholar 

  • Le A, Cooper CR, Gouw AM et al (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A 107(5):2037–2042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Park HJ, Park CS et al (2014) Response of breast cancer cells and cancer stem cells to metformin and hyperthermia alone or combined. PLoS One 9(2), e87979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levy JM, Thompson JC, Griesinger AM et al (2014) Autophagy inhibition improves chemosensitivity in BRAF(V600E) brain tumors. Cancer Discov 4:773–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Yeung SC, Hassan MM, Konopleva M, Abbruzzese JL (2009) Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology 137(2):482–488

    Article  PubMed  PubMed Central  Google Scholar 

  • Li C, Liu VW, Chiu PM, Chan DW, Ngan HY (2012) Over-expressions of AMPK subunits in ovarian carcinomas with significant clinical implications. BMC Cancer 12:357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Saud SM, Young MR, Chen G, Hua B (2015) Targeting AMPK for cancer prevention and treatment. Oncotarget 6(10):7365–7378

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang J, Shao SH, Xu ZX et al (2007) The energy sensing LKB1–AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9(2):218–224

    Article  CAS  PubMed  Google Scholar 

  • Libby G, Donnelly LA, Donnan PT et al (2009) New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care 32(9):1620–1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Cao Y, Zhang W et al (2012) A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther 11:1672–1682

    Article  CAS  PubMed  Google Scholar 

  • Lizcano JM, Göransson O, Toth R et al (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 23:833–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Löffler AS, Alers S, Dieterle AM et al (2011) Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy 7:696–706

    Article  PubMed  CAS  Google Scholar 

  • Luo Z, Saha AK, Xiang X, Ruderman NB (2005) AMPK, the metabolic syndrome and cancer. Trends Pharmacol Sci 26(2):69–76

    Article  CAS  PubMed  Google Scholar 

  • Mao K, Klionsky DJ (2011) AMPK activates autophagy by phosphorylating ULK1. Circ Res 108:787–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maugeri-Saccà M, Vigneri P, De Maria R (2011) Cancer stem cells and chemosensitivity. Clin Cancer Res 17:4942–4947

    Article  PubMed  CAS  Google Scholar 

  • Mendoza EE, Pocceschi MG, Kong X et al (2012) Control of Glycolytic Flux by AMP-Activated Protein Kinase in Tumor Cells Adapted to Low pH. Transl Oncol 5:208–216

    Article  PubMed  PubMed Central  Google Scholar 

  • Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13:1016–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouradian M, Kikawa KD, Dranka BP et al (2014) Docosahexaenoic acid attenuates breast cancer cell metabolism and the Warburg phenotype by targeting bioenergetic function. Mol Carcinog. doi:10.1002/mc.22151

    PubMed  Google Scholar 

  • Nakanishi C, Yamaguchi T, Iijima T et al (2004) Germline mutation of the LKB1/STK11 gene with loss of the normal allele in an aggressive breast cancer of Peutz-Jeghers syndrome. Oncology 67(5-6):476–479

    Article  PubMed  Google Scholar 

  • Nam M, Lee WH, Bae EJ, Kim SG (2008) Compound C inhibits clonal expansion of preadipocytes by increasing p21 level irrespectively of AMPK inhibition. Arch Biochem Biophys 479:74–81

    Article  CAS  PubMed  Google Scholar 

  • Neumeister V, Agarwal S, Bordeaux J, Camp RL, Rimm DL (2010) In situ identification of putative cancer stem cells by multiplexing ALDH1, CD44, and cytokeratin identifies breast cancer patients with poor prognosis. Am J Pathol 176:2131–2138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishino Y, Miura T, Miki T et al (2004) Ischemic preconditioning activates AMPK in a PKC-dependent manner and induces GLUT4 up-regulation in the late phase of cardioprotection. Cardiovasc Res 61(3):610–619

    Article  CAS  PubMed  Google Scholar 

  • Ouyang J, Parakhia RA, Ochs RS (2011) Metformin activates AMP kinase through inhibition of AMP deaminase. J Biol Chem 286(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Owen MR, Doran E, Halestrap AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348(Pt 3):607–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HU, Suy S, Danner M et al (2009) AMP-activated protein kinase promotes human prostate cancer cell growth and survival. Mol Cancer Ther 8:733–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pazarentzos E, Bivona TG (2015) Adaptive stress signaling in targeted cancer therapy resistance. Oncogene 34(45):5599–5606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto K, McCarthy A, Smith D et al (2005) Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J 24:1810–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanli T, Steinberg GR, Singh G, Tsakiridis T (2014) AMP-activated protein kinase (AMPK) beyond metabolism: a novel genomic stress sensor participating in the DNA damage response pathway. Cancer Biol Ther 15:156–169

    Article  CAS  PubMed  Google Scholar 

  • Sato N, Rosty C, Jansen M et al (2001) STK11/LKB1 Peutz-Jeghers gene inactivation in intraductal papillary-mucinous neoplasms of the pancreas. Am J Pathol 159(6):2017–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato A, Sunayama J, Okada M et al (2012) Glioma-initiating cell elimination by metformin activation of FOXO3 via AMPK. Stem Cells Transl Med 1:811–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauer H, Engel S, Milosevic N, Sharifpanah F, Wartenberg M (2012) Activation of AMP-kinase by AICAR induces apoptosis of DU-145 prostate cancer cells through generation of reactive oxygen species and activation of c-Jun N-terminal kinase. Int J Oncol 40:501–508

    CAS  PubMed  Google Scholar 

  • Shackelford DB, Abt E, Gerken L et al (2013) LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 23:143–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw RJ, Cantley LC (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441:424–430

    Article  CAS  PubMed  Google Scholar 

  • Shaw RJ, Lamia KA, Vasquez D et al (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310:1642–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shell SA, Lyass L, Trusk PB et al (2008) Activation of AMPK is necessary for killing cancer cells and sparing cardiac cells. Cell Cycle 7(12):1769–1775

    Article  CAS  PubMed  Google Scholar 

  • Shi HS, Li D, Zhang J et al (2010) Silencing of pkm2 increases the efficacy of docetaxel in human lung cancer xenografts in mice. Cancer Sci 101:1447–1453

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Qin N, Hu L et al (2011) Tiliroside-derivatives enhance GLUT4 translocation via AMPK in muscle cells. Diabetes Res Clin Pract 92:e41–e46

    Article  CAS  PubMed  Google Scholar 

  • Shirwany NA, Zou MH (2014a) AMPK: a cellular metabolic and redox sensor. A minireview. Front Biosci 19:447–474

    Article  CAS  Google Scholar 

  • Shirwany NA, Zou MH (2014b) AMPK: a cellular metabolic and redox sensor. A minireview. Front Biosci (Landmark Ed) 19:447–474

    Article  CAS  Google Scholar 

  • Short JD, Dere R, Houston KD et al (2010) AMPK-mediated phosphorylation of murine p27 at T197 promotes binding of 14-3-3 proteins and increases p27 stability. Mol Carcinog 49:429–439

    CAS  PubMed  Google Scholar 

  • Snima KS, Pillai P, Cherian AM, Nair SV, Lakshmanan VK (2014) Anti-diabetic drug metformin: challenges and perspectives for cancer therapy. Curr Cancer Drug Targets 14(8):727–736

    Article  CAS  PubMed  Google Scholar 

  • Sui X, Chen R, Wang Z et al (2013) Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis 4, e838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao R, Gong J, Luo X, Zang M, Guo W, Wen R, Luo Z (2010) AMPK exerts dual regulatory effects on the PI3K pathway. J Mol Signal 5:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tirino V, Desiderio V, Paino F et al (2013) Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. FASEB J 27:13–24

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DN, Chowdhury R, Trudel LJ et al (2013) Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1. Proc Natl Acad Sci U S A 110:E2950–E2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatesha VA, Parsels LA, Parsels JD et al (2012) Sensitization of pancreatic cancer stem cells to gemcitabine by Chk1 inhibition. Neoplasia 14:519–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vucicevic L, Misirkic M, Janjetovic K et al (2009) AMP-activated protein kinase-dependent and -independent mechanisms underlying in vitro antiglioma action of compound C. Biochem Pharmacol 77(11):1684–1693

    Article  CAS  PubMed  Google Scholar 

  • Vucicevic L, Misirkic M, Janjetovic K et al (2011) Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway. Autophagy 7(1):40–50

    Article  CAS  PubMed  Google Scholar 

  • Wan Z, Root-McCaig J, Castellani L et al (2014) Evidence for the role of AMPK in regulating PGC-1 alpha expression and mitochondrial proteins in mouse epididymal adipose tissue. Obesity (Silver Spring) 22:730–738

    Article  CAS  Google Scholar 

  • Wang ZY, Loo TY, Shen JG et al (2012) LDH-A silencing suppresses breast cancer tumorigenicity through induction of oxidative stress mediated mitochondrial pathway apoptosis. Breast Cancer Res Treat 131(3):791–800

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wang N, Liu P et al (2014) MicroRNA-25 regulates chemoresistance-associated autophagy in breast cancer cells, a process modulated by the natural autophagy inducer isoliquiritigenin. Oncotarget 5:7013–7026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CA, Chao Y, Shiah SG, Lin WW (2013) Nutrient deprivation induces the Warburg effect through ROS/AMPK-dependent activation of pyruvate dehydrogenase kinase. Biochim Biophys Acta 1833:1147–1156

    Article  CAS  PubMed  Google Scholar 

  • Xiao B, Sanders MJ, Underwood E et al (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472:230–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao X, He Q, Lu C et al (2012) Metformin impairs the growth of liver kinase B1-intact cervical cancer cells. Gynecol Oncol 127:249–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie M, Zhang D, Dyck JR et al (2006) A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc Natl Acad Sci U S A 103:17378–17383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin H, Kong Y, Jiang X et al (2013) Multi-drug-resistant cells enriched from chronic myeloid leukemia cells by Doxorubicin possess tumor-initiating-cell properties. J Pharmacol Sci 122:299–304

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Ji J, Yan XH (2012) Cross-talk between AMPK and mTOR in regulating energy balance. Crit Rev Food Sci Nutr 52:373–381

    Article  CAS  PubMed  Google Scholar 

  • Yan M, Gingras MC, Dunlop EA et al (2014) The tumor suppressor folliculin regulates AMPK-dependent metabolic transformation. J Clin Invest 124:2640–2650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Hong YH, Shen XQ, Frankowski C, Camp HS, Leff T (2001) Regulation of transcription by AMP activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors. J Biol Chem 276(42):38341–38344

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Ahn SG, Lee BH, Jung SH, Oh SH (2012) Role of autophagy in chemoresistance: regulation of the ATM-mediated DNA-damage signaling pathway through activation of DNA-PKcs and PARP-1. Biochem Pharmacol 83:747–757

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Yang SJ (2010) AMP-activated protein kinase mediates activity-dependent regulation of peroxisome proliferator-activated receptor gamma coactivator-1alpha and nuclear respiratory factor 1 expression in rat visual cortical neurons. Neuroscience 169:23–38

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Yao H, Zhu P et al (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131:1109–1123

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wang S, Wangtao et al (2009) Upregulation of GRP78 and GRP94 and its function in chemotherapy resistance to VP-16 in human lung cancer cell line SK-MES-1. Cancer Invest 27(4):453–458

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Klionsky DJ (2011) AMPK-dependent phosphorylation of ULK1 induces autophagy. Cell Metab 13(2):119–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Liu H, Liu Z et al (2011) Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism. Cancer Res 71(13):4585–4597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Huang W, Tao R et al (2009) Inactivation of AMPK alters gene expression and promotes growth of prostate cancer cells. Oncogene 28(18):1993–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Zhao Y, Ding Y et al (2010) Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol Cancer 9:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zou Z, Yuan Z, Zhang Q et al (2012) Aurora kinase A inhibition-induced autophagy triggers drug resistance in breast cancer cells. Autophagy 8(12):1798–1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interests

No potential conflicts of interest exist.

Acknowledgements This work was supported by the National Natural Science Foundation of China (81402173 and 81573651) and Pearl River S&T Nova Program of Guangzhou (201506010098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, Z., Wang, N., Liu, P., Xie, X. (2016). AMPK and Cancer. In: Cordero, M., Viollet, B. (eds) AMP-activated Protein Kinase. Experientia Supplementum, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-43589-3_9

Download citation

Publish with us

Policies and ethics