AMPK in Cardiovascular Diseases

  • Evangelos P. Daskalopoulos
  • Cécile Dufeys
  • Christophe Beauloye
  • Luc BertrandEmail author
  • Sandrine Horman
Part of the Experientia Supplementum book series (EXS, volume 107)


This chapter summarizes the implication of AMP-activated protein kinase (AMPK) in the regulation of various physiological and pathological cellular events of great importance for the maintenance of cardiac function. These include the control of both metabolic and non-metabolic elements targeting the different cellular components of the cardiac tissue, i.e., cardiomyocytes, fibroblasts, and vascular cells. The description of the multifaceted action of the two AMPK catalytic isoforms, α1 and α2, emphasizes the general protective action of this protein kinase against the development of critical pathologies like myocardial ischemia, cardiac hypertrophy, diabetic cardiomyopathy, and heart failure.


AMPK Heart Ischemia Ischemia-reperfusion Metabolism Myocardial infarction Hypertrophy Fibrosis Left ventricular remodeling Heart failure 


  1. An D, Pulinilkunnil T, Qi D, Ghosh S, Abrahani A, Rodrigues B (2005) The metabolic “switch” AMPK regulates cardiac heparin-releasable lipoprotein lipase. Am J Physiol Endocrinol Metab 288(1):E246–E253PubMedCrossRefGoogle Scholar
  2. Armoni M, Harel C, Karni S, Chen H, Bar-Yoseph F, Ver MR, Quon MJ, Karnieli E (2006) FOXO1 represses peroxisome proliferator-activated receptor-gamma1 and -gamma2 gene promoters in primary adipocytes. A novel paradigm to increase insulin sensitivity. J Biol Chem 281(29):19881–19891PubMedCrossRefGoogle Scholar
  3. Arya R, Kedar V, Hwang JR, McDonough H, Li HH, Taylor J, Patterson C (2004) Muscle ring finger protein-1 inhibits PKC{epsilon} activation and prevents cardiomyocyte hypertrophy. J Cell Biol 167(6):1147–1159PubMedPubMedCentralCrossRefGoogle Scholar
  4. Balteau M, Van Steenbergen A, Timmermans AD, Dessy C, Behets-Wydemans G, Tajeddine N, Castanares-Zapatero D, Gilon P, Vanoverschelde JL, Horman S, Hue L, Bertrand L, Beauloye C (2014) AMPK activation by glucagon-like peptide-1 prevents NADPH oxidase activation induced by hyperglycemia in adult cardiomyocytes. Am J Physiol Heart Circ Physiol 307(8):H1120–H1133PubMedCrossRefGoogle Scholar
  5. Beauloye C, Bertrand L, Horman S, Hue L (2011) AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure. Cardiovasc Res 90(2):224–233PubMedCrossRefGoogle Scholar
  6. Bendall JK, Cave AC, Heymes C, Gall N, Shah AM (2002) Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105(3):293–296PubMedCrossRefGoogle Scholar
  7. Bertrand L, Ginion A, Beauloye C, Hebert AD, Guigas B, Hue L, Vanoverschelde JL (2006) AMPK activation restores the stimulation of glucose uptake in an in vitro model of insulin-resistant cardiomyocytes via the activation of protein kinase B. Am J Physiol Heart Circ Physiol 291(1):H239–H250PubMedCrossRefGoogle Scholar
  8. Bertrand L, Horman S, Beauloye C, Vanoverschelde JL (2008) Insulin signalling in the heart. Cardiovasc Res 79(2):238–248PubMedCrossRefGoogle Scholar
  9. Calvert JW, Gundewar S, Jha S, Greer JJ, Bestermann WH, Tian R, Lefer DJ (2008) Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 57(3):696–705PubMedCrossRefGoogle Scholar
  10. Carvajal K, Zarrinpashneh E, Szarszoi O, Joubert F, Athea Y, Mateo P, Gillet B, Vaulont S, Viollet B, Bigard X, Bertrand L, Ventura-Clapier R, Hoerter JA (2007) Dual cardiac contractile effects of the alpha2-AMPK deletion in low-flow ischemia and reperfusion. Am J Physiol Heart Circ Physiol 292(6):H3136–H3147PubMedCrossRefGoogle Scholar
  11. Castanares-Zapatero D, Bouleti C, Sommereyns C, Gerber B, Lecut C, Mathivet T, Horckmans M, Communi D, Foretz M, Vanoverschelde JL, Germain S, Bertrand L, Laterre PF, Oury C, Viollet B, Horman S, Beauloye C (2013) Connection between cardiac vascular permeability, myocardial edema, and inflammation during sepsis: role of the alpha1AMP-activated protein kinase isoform. Crit Care Med 41(12):e411–e422PubMedCrossRefGoogle Scholar
  12. Chan AY, Soltys CL, Young ME, Proud CG, Dyck JR (2004) Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte. J Biol Chem 279(31):32771–32779PubMedCrossRefGoogle Scholar
  13. Chan AY, Dolinsky VW, Soltys CL, Viollet B, Baksh S, Light PE, Dyck JR (2008) Resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt. J Biol Chem 283(35):24194–24201PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chen ZP, Mitchelhill KI, Michell BJ, Stapleton D, Rodriguez-Crespo I, Witters LA, Power DA (1999) Ortiz de Montellano PR, Kemp BE. AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett 443(3):285–289PubMedCrossRefGoogle Scholar
  15. Chen BL, Ma YD, Meng RS, Xiong ZJ, Wang HN, Zeng JY, Liu C, Dong YG (2010) Activation of AMPK inhibits cardiomyocyte hypertrophy by modulating of the FOXO1/MuRF1 signaling pathway in vitro. Acta Pharmacol Sin 31(7):798–804PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chen KH, Hsu HH, Lee CC, Yen TH, Ko YC, Yang CW, Hung CC (2014) The AMPK agonist AICAR inhibits TGF-beta1 induced activation of kidney myofibroblasts. PLoS One 9(9), e106554PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cheung PC, Salt IP, Davies SP, Hardie DG, Carling D (2000) Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J 346(Pt 3):659–669PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cieslik KA, Taffet GE, Crawford JR, Trial J, Mejia Osuna P, Entman ML (2013) AICAR-dependent AMPK activation improves scar formation in the aged heart in a murine model of reperfused myocardial infarction. J Mol Cell Cardiol 63:26–36PubMedCrossRefGoogle Scholar
  19. Daniels A, van Bilsen M, Janssen BJ, Brouns AE, Cleutjens JP, Roemen TH, Schaart G, van der Velden J, van der Vusse GJ, van Nieuwenhoven FA (2010) Impaired cardiac functional reserve in type 2 diabetic db/db mice is associated with metabolic, but not structural, remodelling. Acta Physiol (Oxf) 200(1):11–22Google Scholar
  20. Daskalopoulos EP, Janssen BJ, Blankesteijn WM (2012) Myofibroblasts in the infarct area: concepts and challenges. Microsc Microanal 18(1):35–49PubMedCrossRefGoogle Scholar
  21. Daskalopoulos EP, Hermans KCM, van Delft L, Altara R, Blankesteijn WM (2014) Inflammation in heart failure, 1st edn. Academic, New YorkGoogle Scholar
  22. Daskalopoulos EP, Dufeys C, Bertrand L, Beauloye C, Horman S (2016) AMPK in cardiac fibrosis and repair: Actions beyond metabolic regulation. J Mol Cell Cardiol 91:188–200PubMedCrossRefGoogle Scholar
  23. de Meester C, Timmermans AD, Balteau M, Ginion A, Roelants V, Noppe G, Porporato PE, Sonveaux P, Viollet B, Sakamoto K, Feron O, Horman S, Vanoverschelde JL, Beauloye C, Bertrand L (2014) Role of AMP-activated protein kinase in regulating hypoxic survival and proliferation of mesenchymal stem cells. Cardiovasc Res 101(1):20–29PubMedCrossRefGoogle Scholar
  24. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122(1):103–111PubMedCrossRefGoogle Scholar
  25. Dixit M, Bess E, Fisslthaler B, Hartel FV, Noll T, Busse R, Fleming I (2008) Shear stress-induced activation of the AMP-activated protein kinase regulates FoxO1a and angiopoietin-2 in endothelial cells. Cardiovasc Res 77(1):160–168PubMedCrossRefGoogle Scholar
  26. Dolinsky VW, Chan AY, Robillard Frayne I, Light PE, Des Rosiers C, Dyck JR (2009) Resveratrol prevents the prohypertrophic effects of oxidative stress on LKB1. Circulation 119(12):1643–1652PubMedCrossRefGoogle Scholar
  27. Dolinsky VW, Chakrabarti S, Pereira TJ, Oka T, Levasseur J, Beker D, Zordoky BN, Morton JS, Nagendran J, Lopaschuk GD, Davidge ST, Dyck JR (2013) Resveratrol prevents hypertension and cardiac hypertrophy in hypertensive rats and mice. Biochim Biophys Acta 1832(10):1723–1733PubMedCrossRefGoogle Scholar
  28. Dyck JR, Lopaschuk GD (2006) AMPK alterations in cardiac physiology and pathology: enemy or ally? J Physiol 574(Pt 1):95–112PubMedPubMedCentralCrossRefGoogle Scholar
  29. Edmunds LR, Sharma L, Wang H, Kang A, d'Souza S, Lu J, McLaughlin M, Dolezal JM, Gao X, Weintraub ST, Ding Y, Zeng X, Yates N, Prochownik EV (2015) c-Myc and AMPK Control Cellular Energy Levels by Cooperatively Regulating Mitochondrial Structure and Function. PLoS One 10(7), e0134049PubMedPubMedCentralCrossRefGoogle Scholar
  30. Esposito G, Prasad SV, Rapacciuolo A, Mao L, Koch WJ, Rockman HA (2001) Cardiac overexpression of a G(q) inhibitor blocks induction of extracellular signal-regulated kinase and c-Jun NH(2)-terminal kinase activity in in vivo pressure overload. Circulation 103(10):1453–1458PubMedCrossRefGoogle Scholar
  31. Evans-Anderson HJ, Alfieri CM, Yutzey KE (2008) Regulation of cardiomyocyte proliferation and myocardial growth during development by FOXO transcription factors. Circ Res 102(6):686–694PubMedCrossRefGoogle Scholar
  32. Falcao-Pires I, Leite-Moreira AF (2012) Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev 17(3):325–344PubMedCrossRefGoogle Scholar
  33. Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B (2014) Metformin: from mechanisms of action to therapies. Cell Metab 20(6):953–966PubMedCrossRefGoogle Scholar
  34. Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79PubMedCrossRefGoogle Scholar
  35. Fu YN, Xiao H, Ma XW, Jiang SY, Xu M, Zhang YY (2011) Metformin attenuates pressure overload-induced cardiac hypertrophy via AMPK activation. Acta Pharmacol Sin 32(7):879–887PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fukuda M (2011) TBC proteins: GAPs for mammalian small GTPase Rab? Biosci Rep 31(3):159–168PubMedCrossRefGoogle Scholar
  37. Ginion A, Auquier J, Benton CR, Mouton C, Vanoverschelde JL, Hue L, Horman S, Beauloye C, Bertrand L (2011) Inhibition of the mTOR/p70S6K pathway is not involved in the insulin-sensitizing effect of AMPK on cardiac glucose uptake. Am J Physiol Heart Circ Physiol 301(2):H469–H477PubMedCrossRefGoogle Scholar
  38. Gundewar S, Calvert JW, Jha S, Toedt-Pingel I, Ji SY, Nunez D, Ramachandran A, Anaya-Cisneros M, Tian R, Lefer DJ (2009) Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ Res 104(3):403–411PubMedCrossRefGoogle Scholar
  39. Guo R, Zhang Y, Turdi S, Ren J (2013) Adiponectin knockout accentuates high fat diet-induced obesity and cardiac dysfunction: role of autophagy. Biochim Biophys Acta 1832(8):1136–1148PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30(2):214–226PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8(10):774–785PubMedCrossRefGoogle Scholar
  42. He C, Zhu H, Li H, Zou MH, Xie Z (2013) Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis in diabetes. Diabetes 62(4):1270–1281PubMedPubMedCentralCrossRefGoogle Scholar
  43. Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7(8):589–600PubMedCrossRefGoogle Scholar
  44. Hermida N, Markl A, Hamelet J, Van Assche T, Vanderper A, Herijgers P, van Bilsen M, Hilfiker-Kleiner D, Noppe G, Beauloye C, Horman S, Balligand JL (2013) HMGCoA reductase inhibition reverses myocardial fibrosis and diastolic dysfunction through AMP-activated protein kinase activation in a mouse model of metabolic syndrome. Cardiovasc Res 99(1):44–54PubMedCrossRefGoogle Scholar
  45. Hernandez JS, Barreto-Torres G, Kuznetsov AV, Khuchua Z, Javadov S (2014) Crosstalk between AMPK activation and angiotensin II-induced hypertrophy in cardiomyocytes: the role of mitochondria. J Cell Mol Med 18(4):709–720PubMedPubMedCentralCrossRefGoogle Scholar
  46. Herrero-Martin G, Hoyer-Hansen M, Garcia-Garcia C, Fumarola C, Farkas T, Lopez-Rivas A, Jaattela M (2009) TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 28(6):677–685PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hintz KK, Ren J (2002) Prediabetic insulin resistance is not permissive to the development of cardiac resistance to insulin-like growth factor I in ventricular myocytes. Diabetes Res Clin Pract 55(2):89–98PubMedCrossRefGoogle Scholar
  48. Horman S, Browne G, Krause U, Patel J, Vertommen D, Bertrand L, Lavoinne A, Hue L, Proud C, Rider M (2002) Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol 12(16):1419–1423PubMedCrossRefGoogle Scholar
  49. Horman S, Morel N, Vertommen D, Hussain N, Neumann D, Beauloye C, El Najjar N, Forcet C, Viollet B, Walsh MP, Hue L, Rider MH (2008) AMP-activated protein kinase phosphorylates and desensitizes smooth muscle myosin light chain kinase. J Biol Chem 283(27):18505–18512PubMedCrossRefGoogle Scholar
  50. Horman S, Beauloye C, Vanoverschelde JL, Bertrand L (2012) AMP-activated protein kinase in the control of cardiac metabolism and remodeling. Curr Heart Fail Rep 9(3):164–173PubMedCrossRefGoogle Scholar
  51. Howden R (2013) Nrf2 and cardiovascular defense. Oxid Med Cell Longev 2013:104308PubMedPubMedCentralGoogle Scholar
  52. Hue L, Rider MH (2007) The AMP-activated protein kinase: more than an energy sensor. Essays Biochem 43:121–137PubMedCrossRefGoogle Scholar
  53. Ikeda Y, Sato K, Pimentel DR, Sam F, Shaw RJ, Dyck JR, Walsh K (2009) Cardiac-specific deletion of LKB1 leads to hypertrophy and dysfunction. J Biol Chem 284(51):35839–35849PubMedPubMedCentralCrossRefGoogle Scholar
  54. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115(5):577–590PubMedCrossRefGoogle Scholar
  55. Isner JM, Losordo DW (1999) Therapeutic angiogenesis for heart failure. Nat Med 5(5):491–492PubMedCrossRefGoogle Scholar
  56. Kannel WB, Hjortland M, Castelli WP (1974) Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 34(1):29–34PubMedCrossRefGoogle Scholar
  57. Karch R, Neumann F, Ullrich R, Neumuller J, Podesser BK, Neumann M, Schreiner W (2005) The spatial pattern of coronary capillaries in patients with dilated, ischemic, or inflammatory cardiomyopathy. Cardiovasc Pathol 14(3):135–144PubMedCrossRefGoogle Scholar
  58. Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J Clin Invest 110(10):1389–1398PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kim J, Kundu M, Viollet B, Guan KL (2011a) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kim AS, Miller EJ, Wright TM, Li J, Qi D, Atsina K, Zaha V, Sakamoto K, Young LH (2011b) A small molecule AMPK activator protects the heart against ischemia-reperfusion injury. J Mol Cell Cardiol 51(1):24–32PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kramer HF, Witczak CA, Fujii N, Jessen N, Taylor EB, Arnolds DE, Sakamoto K, Hirshman MF, Goodyear LJ (2006) Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle. Diabetes 55(7):2067–2076PubMedCrossRefGoogle Scholar
  62. Kubli DA, Gustafsson AB (2014) Cardiomyocyte health: adapting to metabolic changes through autophagy. Trends Endocrinol Metab 25(3):156–164PubMedCrossRefGoogle Scholar
  63. Kudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD (1995) High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem 270(29):17513–17520PubMedCrossRefGoogle Scholar
  64. Kudo N, Gillespie JG, Kung L, Witters LA, Schulz R, Clanachan AS, Lopaschuk GD (1996) Characterization of 5'AMP-activated protein kinase activity in the heart and its role in inhibiting acetyl-CoA carboxylase during reperfusion following ischemia. Biochim Biophys Acta 1301(1–2):67–75PubMedCrossRefGoogle Scholar
  65. Kundu BK, Zhong M, Sen S, Davogustto G, Keller SR, Taegtmeyer H (2015) Remodeling of glucose metabolism precedes pressure overload-induced left ventricular hypertrophy: review of a hypothesis. Cardiology 130(4):211–220PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lee JW, Park S, Takahashi Y, Wang HG (2010) The association of AMPK with ULK1 regulates autophagy. PLoS One 5(11), e15394PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lee JE, Yi CO, Jeon BT, Shin HJ, Kim SK, Jung TS, Choi JY, Roh GS (2012) Alpha-Lipoic acid attenuates cardiac fibrosis in Otsuka Long-Evans Tokushima Fatty rats. Cardiovasc Diabetol 11:111PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lemasters JJ (1999) The mitochondrial permeability transition and the calcium, oxygen and pH paradoxes: one paradox after another. Cardiovasc Res 44(3):470–473PubMedCrossRefGoogle Scholar
  69. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322(22):1561–1566PubMedCrossRefGoogle Scholar
  70. Li HL, Yin R, Chen D, Liu D, Wang D, Yang Q, Dong YG (2007) Long-term activation of adenosine monophosphate-activated protein kinase attenuates pressure-overload-induced cardiac hypertrophy. J Cell Biochem 100(5):1086–1099PubMedCrossRefGoogle Scholar
  71. Li P, Shibata R, Unno K, Shimano M, Furukawa M, Ohashi T, Cheng X, Nagata K, Ouchi N, Murohara T (2010) Evidence for the importance of adiponectin in the cardioprotective effects of pioglitazone. Hypertension 55(1):69–75PubMedCrossRefGoogle Scholar
  72. Li L, Zhang ZG, Lei H, Wang C, Wu LP, Wang JY, Fu FY, Zhu WG, Wu LL (2013) Angiotensin II reduces cardiac AdipoR1 expression through AT1 receptor/ROS/ERK1/2/c-Myc pathway. PLoS One 8(1), e49915PubMedPubMedCentralCrossRefGoogle Scholar
  73. Li Y, Chen C, Yao F, Su Q, Liu D, Xue R, Dai G, Fang R, Zeng J, Chen Y, Huang H, Ma Y, Li W, Zhang L, Liu C, Dong Y (2014) AMPK inhibits cardiac hypertrophy by promoting autophagy via mTORC1. Arch Biochem Biophys 558:79–86PubMedCrossRefGoogle Scholar
  74. Li Z, Wang J, Yang X (2015) Functions of autophagy in pathological cardiac hypertrophy. Int J Biol Sci 11(6):672–678PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lips DJ (2003) deWindt LJ, van Kraaij DJ, Doevendans PA. Molecular determinants of myocardial hypertrophy and failure: alternative pathways for beneficial and maladaptive hypertrophy. Eur Heart J 24(10):883–896PubMedCrossRefGoogle Scholar
  76. Lopaschuk GD (2008) AMP-activated protein kinase control of energy metabolism in the ischemic heart. Int J Obes (Lond) 32(Suppl 4):S29–S35CrossRefGoogle Scholar
  77. Ma X, Fu Y, Xiao H, Song Y, Chen R, Shen J, An X, Shen Q, Li Z, Zhang Y (2015) Cardiac fibrosis alleviated by exercise training is AMPK-dependent. PLoS One 10(6), e0129971PubMedPubMedCentralCrossRefGoogle Scholar
  78. Marsin AS, Bertrand L, Rider MH, Deprez J, Beauloye C, Vincent MF, Van den Berghe G, Carling D, Hue L (2000) Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol 10(20):1247–1255PubMedCrossRefGoogle Scholar
  79. Martinez DA, Guhl DJ, Stanley WC, Vailas AC (2003) Extracellular matrix maturation in the left ventricle of normal and diabetic swine. Diabetes Res Clin Pract 59(1):1–9PubMedCrossRefGoogle Scholar
  80. Masci PG, Doulaptsis C, Bertella E, Del Torto A, Symons R, Pontone G, Barison A, Droogne W, Andreini D, Lorenzoni V, Gripari P, Mushtaq S, Emdin M, Bogaert J, Lombardi M (2014) Incremental prognostic value of myocardial fibrosis in patients with non-ischemic cardiomyopathy without congestive heart failure. Circ Heart Fail 7(3):448–456PubMedCrossRefGoogle Scholar
  81. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100(6):914–922PubMedCrossRefGoogle Scholar
  82. Meley D, Bauvy C, Houben-Weerts JH, Dubbelhuis PF, Helmond MT, Codogno P, Meijer AJ (2006) AMP-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem 281(46):34870–34879PubMedCrossRefGoogle Scholar
  83. Mishra R, Cool BL, Laderoute KR, Foretz M, Viollet B, Simonson MS (2008) AMP-activated protein kinase inhibits transforming growth factor-beta-induced Smad3-dependent transcription and myofibroblast transdifferentiation. J Biol Chem 283(16):10461–10469PubMedCrossRefGoogle Scholar
  84. Murdoch CE, Zhang M, Cave AC, Shah AM (2006) NADPH oxidase-dependent redox signalling in cardiac hypertrophy, remodelling and failure. Cardiovasc Res 71(2):208–215PubMedCrossRefGoogle Scholar
  85. Nakagami H, Takemoto M, Liao JK (2003) NADPH oxidase-derived superoxide anion mediates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol 35(7):851–859PubMedCrossRefGoogle Scholar
  86. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403(6765):98–103PubMedCrossRefGoogle Scholar
  87. Nascimben L, Ingwall JS, Lorell BH, Pinz I, Schultz V, Tornheim K, Tian R (2004) Mechanisms for increased glycolysis in the hypertrophied rat heart. Hypertension 44(5):662–667PubMedCrossRefGoogle Scholar
  88. Neubauer S (2007) The failing heart--an engine out of fuel. N Engl J Med 356(11):1140–1151PubMedCrossRefGoogle Scholar
  89. Ning Y, Li Z, Qiu Z (2015) FOXO1 silence aggravates oxidative stress-promoted apoptosis in cardiomyocytes by reducing autophagy. J Toxicol Sci 40(5):637–645PubMedCrossRefGoogle Scholar
  90. Noppe G, Dufeys C, Buchlin P, Marquet N, Castanares-Zapatero D, Balteau M, Hermida N, Bouzin C, Esfahani H, Viollet B, Bertrand L, Balligand JL, Vanoverschelde JL, Beauloye C, Horman S (2014) Reduced scar maturation and contractility lead to exaggerated left ventricular dilation after myocardial infarction in mice lacking AMPKalpha1. J Mol Cell Cardiol 74:32–43PubMedCrossRefGoogle Scholar
  91. Oka T, Akazawa H, Naito AT, Komuro I (2014) Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. Circ Res 114(3):565–571PubMedCrossRefGoogle Scholar
  92. Ouchi N, Shibata R, Walsh K (2005) AMP-activated protein kinase signaling stimulates VEGF expression and angiogenesis in skeletal muscle. Circ Res 96(8):838–846PubMedCrossRefGoogle Scholar
  93. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11(4):381–389PubMedCrossRefGoogle Scholar
  94. Paiva MA, Rutter-Locher Z, Goncalves LM, Providencia LA, Davidson SM, Yellon DM, Mocanu MM (2011) Enhancing AMPK activation during ischemia protects the diabetic heart against reperfusion injury. Am J Physiol Heart Circ Physiol 300(6):H2123–H2134PubMedPubMedCentralCrossRefGoogle Scholar
  95. Patten IS, Arany Z (2012) PGC-1 coactivators in the cardiovascular system. Trends Endocrinol Metab 23(2):90–97PubMedCrossRefGoogle Scholar
  96. Philip-Couderc P, Tavares NI, Roatti A, Lerch R, Montessuit C, Baertschi AJ (2008) Forkhead transcription factors coordinate expression of myocardial KATP channel subunits and energy metabolism. Circ Res 102(2):e20–e35PubMedCrossRefGoogle Scholar
  97. Porter KE, Turner NA (2009) Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 123(2):255–278PubMedCrossRefGoogle Scholar
  98. Proud CG (1996) p70 S6 kinase: an enigma with variations. Trends Biochem Sci 21(5):181–185PubMedCrossRefGoogle Scholar
  99. Puthanveetil P, Wan A, Rodrigues B (2013) FoxO1 is crucial for sustaining cardiomyocyte metabolism and cell survival. Cardiovasc Res 97(3):393–403PubMedCrossRefGoogle Scholar
  100. Reihill JA, Ewart MA, Hardie DG, Salt IP (2007) AMP-activated protein kinase mediates VEGF-stimulated endothelial NO production. Biochem Biophys Res Commun 354(4):1084–1088PubMedPubMedCentralCrossRefGoogle Scholar
  101. Ronnebaum SM, Patterson C (2010) The FoxO family in cardiac function and dysfunction. Annu Rev Physiol 72:81–94PubMedPubMedCentralCrossRefGoogle Scholar
  102. Russell RR 3rd, Li J, Coven DL, Pypaert M, Zechner C, Palmeri M, Giordano FJ, Mu J, Birnbaum MJ, Young LH (2004) AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest 114(4):495–503PubMedPubMedCentralCrossRefGoogle Scholar
  103. Sakamoto K, Zarrinpashneh E, Budas GR, Pouleur AC, Dutta A, Prescott AR, Vanoverschelde JL, Ashworth A, Jovanovic A, Alessi DR, Bertrand L (2006) Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKalpha2 but not AMPKalpha1. Am J Physiol Endocrinol Metab 290(5):E780–E788PubMedCrossRefGoogle Scholar
  104. Samovski D, Su X, Xu Y, Abumrad NA, Stahl PD (2012) Insulin and AMPK regulate FA translocase/CD36 plasma membrane recruitment in cardiomyocytes via Rab GAP AS160 and Rab8a Rab GTPase. J Lipid Res 53(4):709–717PubMedPubMedCentralCrossRefGoogle Scholar
  105. Sasaki H, Asanuma H, Fujita M, Takahama H, Wakeno M, Ito S, Ogai A, Asakura M, Kim J, Minamino T, Takashima S, Sanada S, Sugimachi M, Komamura K, Mochizuki N, Kitakaze M (2009) Metformin prevents progression of heart failure in dogs: role of AMP-activated protein kinase. Circulation 119(19):2568–2577PubMedCrossRefGoogle Scholar
  106. Schisler JC, Rubel CE, Zhang C, Lockyer P, Cyr DM, Patterson C (2013) CHIP protects against cardiac pressure overload through regulation of AMPK. J Clin Invest 123(8):3588–3599PubMedPubMedCentralCrossRefGoogle Scholar
  107. Schneider H, Schubert KM, Blodow S, Kreutz CP, Erdogmus S, Wiedenmann M, Qiu J, Fey T, Ruth P, Lubomirov LT, Pfitzer G, Mederos YSM, Hardie DG, Gudermann T, Pohl U (2015) AMPK Dilates Resistance Arteries via Activation of SERCA and BKCa Channels in Smooth Muscle. Hypertension 66(1):108–116PubMedCrossRefGoogle Scholar
  108. Sciarretta S, Volpe M, Sadoshima J (2014) Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res 114(3):549–564PubMedPubMedCentralCrossRefGoogle Scholar
  109. Seddon M, Looi YH, Shah AM (2007) Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 93(8):903–907PubMedCrossRefGoogle Scholar
  110. Sengupta A, Kalinichenko VV, Yutzey KE (2013) FoxO1 and FoxM1 transcription factors have antagonistic functions in neonatal cardiomyocyte cell-cycle withdrawal and IGF1 gene regulation. Circ Res 112(2):267–277PubMedCrossRefGoogle Scholar
  111. Shibata R, Ouchi N, Ito M, Kihara S, Shiojima I, Pimentel DR, Kumada M, Sato K, Schiekofer S, Ohashi K, Funahashi T, Colucci WS, Walsh K (2004) Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat Med 10(12):1384–1389PubMedPubMedCentralCrossRefGoogle Scholar
  112. Shimano M, Ouchi N, Shibata R, Ohashi K, Pimentel DR, Murohara T, Walsh K (2010) Adiponectin deficiency exacerbates cardiac dysfunction following pressure overload through disruption of an AMPK-dependent angiogenic response. J Mol Cell Cardiol 49(2):210–220PubMedPubMedCentralCrossRefGoogle Scholar
  113. Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R, Colucci WS, Walsh K (2005) Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest 115(8):2108–2118PubMedPubMedCentralCrossRefGoogle Scholar
  114. Stahmann N, Woods A, Spengler K, Heslegrave A, Bauer R, Krause S, Viollet B, Carling D, Heller R (2010) Activation of AMP-activated protein kinase by vascular endothelial growth factor mediates endothelial angiogenesis independently of nitric-oxide synthase. J Biol Chem 285(14):10638–10652PubMedPubMedCentralCrossRefGoogle Scholar
  115. Sun M, Ouzounian M, de Couto G, Chen M, Yan R, Fukuoka M, Li G, Moon M, Liu Y, Gramolini A, Wells GJ, Liu PP (2013) Cathepsin-L ameliorates cardiac hypertrophy through activation of the autophagy-lysosomal dependent protein processing pathways. J Am Heart Assoc 2(2), e000191PubMedPubMedCentralCrossRefGoogle Scholar
  116. Takagi H, Matsui Y, Hirotani S, Sakoda H, Asano T, Sadoshima J (2007) AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy 3(4):405–407PubMedCrossRefGoogle Scholar
  117. Tan VP, Miyamoto S (2016) Nutrient-sensing mTORC1: Integration of metabolic and autophagic signals. J Mol Cell CardiolGoogle Scholar
  118. Tian R, Musi N, D'Agostino J, Hirshman MF, Goodyear LJ (2001) Increased adenosine monophosphate-activated protein kinase activity in rat hearts with pressure-overload hypertrophy. Circulation 104(14):1664–1669PubMedCrossRefGoogle Scholar
  119. Timmermans AD, Balteau M, Gelinas R, Renguet E, Ginion A, de Meester C, Sakamoto K, Balligand JL, Bontemps F, Vanoverschelde JL, Horman S, Beauloye C, Bertrand L (2014) A-769662 potentiates the effect of other AMP-activated protein kinase activators on cardiac glucose uptake. Am J Physiol Heart Circ Physiol 306(12):H1619–H1630PubMedCrossRefGoogle Scholar
  120. Treebak JT, Glund S, Deshmukh A, Klein DK, Long YC, Jensen TE, Jorgensen SB, Viollet B, Andersson L, Neumann D, Wallimann T, Richter EA, Chibalin AV, Zierath JR, Wojtaszewski JF (2006) AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits. Diabetes 55(7):2051–2058PubMedCrossRefGoogle Scholar
  121. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287(5453):664–666PubMedCrossRefGoogle Scholar
  122. Wang Y, Gao E, Tao L, Lau WB, Yuan Y, Goldstein BJ, Lopez BL, Christopher TA, Tian R, Koch W, Ma XL (2009) AMP-activated protein kinase deficiency enhances myocardial ischemia/reperfusion injury but has minimal effect on the antioxidant/antinitrative protection of adiponectin. Circulation 119(6):835–844PubMedPubMedCentralCrossRefGoogle Scholar
  123. Weber KT, Pick R, Jalil JE, Janicki JS, Carroll EP (1989) Patterns of myocardial fibrosis. J Mol Cell Cardiol 21(Suppl 5):121–131PubMedCrossRefGoogle Scholar
  124. Weber KT, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC (2013) Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol 10(1):15–26PubMedCrossRefGoogle Scholar
  125. Weiss J, Hiltbrand B (1985) Functional compartmentation of glycolytic versus oxidative metabolism in isolated rabbit heart. J Clin Invest 75(2):436–447PubMedPubMedCentralCrossRefGoogle Scholar
  126. Wilkins BJ, Molkentin JD (2004) Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem Biophys Res Commun 322(4):1178–1191PubMedCrossRefGoogle Scholar
  127. Wu D, Lei H, Wang JY, Zhang CL, Feng H, Fu FY, Li L, Wu LL (2015) CTRP3 attenuates post-infarct cardiac fibrosis by targeting Smad3 activation and inhibiting myofibroblast differentiation. J Mol Med (Berl) 93(12):1311–1325CrossRefGoogle Scholar
  128. Xie Z, Lau K, Eby B, Lozano P, He C, Pennington B, Li H, Rathi S, Dong Y, Tian R, Kem D, Zou MH (2011) Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 60(6):1770–1778PubMedPubMedCentralCrossRefGoogle Scholar
  129. Xing Y, Musi N, Fujii N, Zou L, Luptak I, Hirshman MF, Goodyear LJ, Tian R (2003) Glucose metabolism and energy homeostasis in mouse hearts overexpressing dominant negative alpha2 subunit of AMP-activated protein kinase. J Biol Chem 278(31):28372–28377PubMedCrossRefGoogle Scholar
  130. Xu J, Wang S, Viollet B, Zou MH (2012) Regulation of the proteasome by AMPK in endothelial cells: the role of O-GlcNAc transferase (OGT). PLoS One 7(5), e36717PubMedPubMedCentralCrossRefGoogle Scholar
  131. Xu X, Lu Z, Fassett J, Zhang P, Hu X, Liu X, Kwak D, Li J, Zhu G, Tao Y, Hou M, Wang H, Guo H, Viollet B, McFalls EO, Bache RJ, Chen Y (2014) Metformin protects against systolic overload-induced heart failure independent of AMP-activated protein kinase alpha2. Hypertension 63(4):723–728PubMedPubMedCentralCrossRefGoogle Scholar
  132. Yang J, Holman GD (2005) Insulin and contraction stimulate exocytosis, but increased AMP-activated protein kinase activity resulting from oxidative metabolism stress slows endocytosis of GLUT4 in cardiomyocytes. J Biol Chem 280(6):4070–4078PubMedCrossRefGoogle Scholar
  133. Yin M, van der Horst IC, van Melle JP, Qian C, van Gilst WH, Sillje HH, de Boer RA (2011) Metformin improves cardiac function in a nondiabetic rat model of post-MI heart failure. Am J Physiol Heart Circ Physiol 301(2):H459–H468PubMedCrossRefGoogle Scholar
  134. Zaha VG, Qi D, Su KN, Palmeri M, Lee HY, Hu X, Wu X, Shulman GI, Rabinovitch PS, Russell RR 3rd, Young LH (2015) AMPK is critical for mitochondrial function during reperfusion after myocardial ischemia. J Mol Cell Cardiol 91:104–113PubMedPubMedCentralCrossRefGoogle Scholar
  135. Zanchi NE, Lancha AH Jr (2008) Mechanical stimuli of skeletal muscle: implications on mTOR/p70s6k and protein synthesis. Eur J Appl Physiol 102(3):253–263PubMedCrossRefGoogle Scholar
  136. Zarrinpashneh E, Carjaval K, Beauloye C, Ginion A, Mateo P, Pouleur AC, Horman S, Vaulont S, Hoerter J, Viollet B, Hue L, Vanoverschelde JL, Bertrand L (2006) Role of the alpha2-isoform of AMP-activated protein kinase in the metabolic response of the heart to no-flow ischemia. Am J Physiol Heart Circ Physiol 291(6):H2875–H2883PubMedCrossRefGoogle Scholar
  137. Zarrinpashneh E, Beauloye C, Ginion A, Pouleur AC, Havaux X, Hue L, Viollet B, Vanoverschelde JL, Bertrand L (2008) AMPKalpha2 counteracts the development of cardiac hypertrophy induced by isoproterenol. Biochem Biophys Res Commun 376(4):677–681PubMedCrossRefGoogle Scholar
  138. Zhang P, Hu X, Xu X, Fassett J, Zhu G, Viollet B, Xu W, Wiczer B, Bernlohr DA, Bache RJ, Chen Y (2008) AMP activated protein kinase-alpha2 deficiency exacerbates pressure-overload-induced left ventricular hypertrophy and dysfunction in mice. Hypertension 52(5):918–924PubMedPubMedCentralCrossRefGoogle Scholar
  139. Zhang CX, Pan SN, Meng RS, Peng CQ, Xiong ZJ, Chen BL, Chen GQ, Yao FJ, Chen YL, Ma YD, Dong YG (2011) Metformin attenuates ventricular hypertrophy by activating the AMP-activated protein kinase-endothelial nitric oxide synthase pathway in rats. Clin Exp Pharmacol Physiol 38(1):55–62PubMedCrossRefGoogle Scholar
  140. Zhang Z, Wang S, Zhou S, Yan X, Wang Y, Chen J, Mellen N, Kong M, Gu J, Tan Y, Zheng Y, Cai L (2014) Sulforaphane prevents the development of cardiomyopathy in type 2 diabetic mice probably by reversing oxidative stress-induced inhibition of LKB1/AMPK pathway. J Mol Cell Cardiol 77:42–52PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Evangelos P. Daskalopoulos
    • 1
    • 2
  • Cécile Dufeys
    • 1
  • Christophe Beauloye
    • 1
    • 3
  • Luc Bertrand
    • 1
    Email author
  • Sandrine Horman
    • 1
  1. 1.Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular ResearchBrusselsBelgium
  2. 2.Cardiovascular Research (Care) InstituteAthens, IoanninaGreece
  3. 3.Division of CardiologyCliniques universitaires Saint-LucBrusselsBelgium

Personalised recommendations