Advertisement

AMPK/Mitochondria in Metabolic Diseases

  • Pedro BullonEmail author
  • Fabiola Marin-Aguilar
  • Lourdes Roman-Malo
Chapter
Part of the Experientia Supplementum book series (EXS, volume 107)

Abstract

The obtaining of nutrients is the most important task in our lives. Energy is central to life’s evolutions; this was one of the aspect that induced the selection of the more adaptable and more energetically profitable species. Nowadays things have changed in our modern society. A high proportion of people has access to plenty amount of food and the obesity appear as one of the pathological characteristics of our society. Energy is obtained essentially in the mitochondria with the transfer of protons across the inner membrane that produce ATP. The exactly regulation of the synthesis and degradation of ATP (ATP ↔ ADP + phosphate) is essential to all form of life. This task is performed by the 5' adenosine monophosphate-activated protein kinase (AMPK). mtDNA is highly exposed to oxidative damage and could play a central role in human health and disease. This high potential rate of abnormalities is controlled by one of the most complex mechanism: the autophagy. AMPK appears to be the key cellular energy sensor involved in multiple cellular mechanisms and is essential to have a good metabolic homeostasis to face all the aggression and start the inflammatory reaction. Therefore its disturbances have been related with multiple diseases. Recent findings support the role of AMPK in inflammation and immunity such as Metabolic Syndrome, Obesity and Diabetes. All these Metabolic Disorders are considered pandemics and they need an adequate control and prevention. One important way to achieve it is deepen in the pathogenic mechanisms. Mitochondria and AMPK are the key elements through which it happen, their knowledge and research allow us to a better management. The discovery and use of drugs that can modulate them is imperative to improve our way of manage the metabolic disorders.

Keywords

AMPK Mitochondria mtDNA Metabolic Diseases Metabolic Syndrome Obesity Diabetes Inflammation Inflammation treatment 

References

  1. Agrawal NK, Kant S (2014) Targeting inflammation in diabetes: newer therapeutic options. World J Diabetes 5:697–710PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahima RS, Flier JS (2000) Leptin. Annu Rev Physiol 62:413–437PubMedCrossRefGoogle Scholar
  3. Alberti KGMM, Zimmet P (2005) The metabolic syndrome—a new worldwide definition. Lancet 366:1059–1062PubMedCrossRefGoogle Scholar
  4. Alberti KGMM, Eckel RH, Grundy SM et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International atherosclerosis society; And international association for the study of obesity. Circulation 120:1640–1645PubMedCrossRefGoogle Scholar
  5. Andersson U, Filipsson K, Abbott CR et al (2004) AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem 279:12005–12008PubMedCrossRefGoogle Scholar
  6. Andreelli F, Foretz M, Knauf C, Cani PD, Perrin C, Iglesias MA, Pillot B, Bado A, Tronche F, Mithieux G, Vaulont S, Burcelin R, Viollet B (2006) Liver adenosine monophosphate-activated kinasealpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin. Endocrinology 147:2432–2441PubMedCrossRefGoogle Scholar
  7. Archibald JM (2015) Evolution: gene transfer in complex cells. Nature 524:423–424PubMedCrossRefGoogle Scholar
  8. Barsh GS, Farooqi IS, O’Rahilly S (2000) Genetics of body-weight regulation. Nature 404:644–651PubMedGoogle Scholar
  9. Benard G, Rossignol R (2008) Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxid Redox Signal 10:1313–13142PubMedCrossRefGoogle Scholar
  10. Biala AK, Dhingra R, Kirshenbaum LA (2015) Mitochondrial dynamics: orchestrating the journey to advanced age. J Mol Cell Cardiol 83:37–43PubMedCrossRefGoogle Scholar
  11. Boden G, Lebed B, Schatz M, Homko C, Lemieux S (2001) Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes 50:1612–1617PubMedCrossRefGoogle Scholar
  12. Bogacka I, Ukropcova B, McNeil M, Gimble JM, Smith SR (2005a) Structural and functional consequences of mitochondrial biogenesis in human adipocytes in vitro. J Clin Endocrinol Metab 90:6650–6656PubMedCrossRefGoogle Scholar
  13. Bogacka I, Xie H, Bray GA, Smith SR (2005b) Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes 54:1392–1399PubMedCrossRefGoogle Scholar
  14. Bogacka I, Gettys TW, de Jonge L et al (2007) The effect of β-adrenergic and peroxisome proliferator-activated receptor-γ stimulation on target genes related to lipid metabolism in human subcutaneous adipose tissue. Diabetes Care 30:1179–1186PubMedCrossRefGoogle Scholar
  15. Bray GA, Tartaglia LA (2000) Medicinal strategies in the treatment of obesity. Nature 404:672–677PubMedGoogle Scholar
  16. Brown CL, Halvorson EE, Cohen GM, Lazorick S, Skelton JA (2015) Addressing childhood obesity: opportunities for prevention. Pediatr Clin North Am 62:1241–1261PubMedPubMedCentralCrossRefGoogle Scholar
  17. Burté F, Carelli V, Chinnery PF, Yu-Wai-Man P (2015) Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol 11:11–24PubMedCrossRefGoogle Scholar
  18. Cai K, Qi D, Wang O, Chen J, Liu X, Deng B, Qian L, Liu X, Le Y (2011) TNF-α acutely upregulates amylin expression in murine pancreatic beta cells. Diabetologia 54:617–626PubMedCrossRefGoogle Scholar
  19. Cheng J, Qiao L, Xu X, Zhai C, Zhao K, Ji X, Chen W (2015) Lower AMP-activated protein kinase level is associated with the vulnerability of coronary atherosclerotic plaques by attenuating the expression of monocyte autophagy. Coron Artery Dis 26:322–327PubMedCrossRefGoogle Scholar
  20. Choo HJ, Kim JH, Kwon OB et al (2006) Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia 49:784–791PubMedCrossRefGoogle Scholar
  21. Cigolini M, Targher G, Andreis IAB, Tonoli M, Agostino G, De Sandre G (1996) Visceral fat accumulation and its relation to plasma hemostatic factors in healthy men. Arterioscler Thromb Vasc Biol 16:368–374PubMedCrossRefGoogle Scholar
  22. Dahlman I, Forsgren M, Sjögren A et al (2006) Downregulation of electron transport chain genes in visceral adipose tissue in type 2 diabetes independent of obesity and possibly involving tumor necrosis factor-α. Diabetes 55:1792–1799PubMedCrossRefGoogle Scholar
  23. Engeli S, Feldpausch M, Gorzelniak K et al (2003) Association between adiponectin and mediators of inflammation in obese women. Diabetes 52:942–947PubMedCrossRefGoogle Scholar
  24. Erem C, Ozbas HM, Nuhoglu I, Deger O, Civan N, Ersoz HO (2014) Comparison of effects of gliclazide, metformin and pioglitazone monotherapies on glycemic control and cardiovascular risk factors in patients with newly diagnosed uncontrolled type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 122:295–302PubMedCrossRefGoogle Scholar
  25. Esser N, Paquot N, Scheen AJ (2015) Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin Investig Drugs 24:283–307PubMedCrossRefGoogle Scholar
  26. Ewart MA, Kennedy S (2011) AMPK and vasculoprotection. Pharmacol Ther 131:242–253PubMedCrossRefGoogle Scholar
  27. Ezzati M, Lopez AD, Rodgers A, Vander Hoorn S, Murray CJ, Comparative Risk Assessment Collaborating Group (2002) Selected major risk factors and global and regional burden of disease. Lancet 360:1347–1360PubMedCrossRefGoogle Scholar
  28. Flachs P, Mohamed-Ali V, Horakova O et al (2006) Polyunsaturated fatty acids of marine origin induce adiponectin in mice fed a high-fat diet. Diabetologia 49:394–397PubMedCrossRefGoogle Scholar
  29. Foretz M, Ancellin N, Andreelli F et al (2005) Short-term over expression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 54:1331–1339PubMedCrossRefGoogle Scholar
  30. Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B (2014) Metformin: from mechanisms of action to therapies. Cell Metab 20:953–966PubMedCrossRefGoogle Scholar
  31. Furt F, Moreau P (2009) Importance of lipid metabolism for intracellular and mitochondrial membrane fusion/fission processes. Int J Biochem Cell Biol 41:1828–1836PubMedCrossRefGoogle Scholar
  32. Giri S, Nath N, Smith B, Viollet B, Singh AK, Singh I (2004) 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside inhibits proinflammatory response in glial cells: a possible role of AMP-activated protein kinase. J Neurosci 24:479–487PubMedCrossRefGoogle Scholar
  33. Giri S, Rattan R, Haq E et al (2006) AICAR inhibits adipocyte differentiation in 3T3L1 and restores metabolic alterations in diet-induced obesity mice model. Nutr Metab 3:1743–7075CrossRefGoogle Scholar
  34. Gonzalez-Freire M, de Cabo R, Bernier M, Sollott SJ, Fabbri E, Navas P, Ferrucci L (2015) Reconsidering the role of mitochondria in aging. J Gerontol A Biol Sci Med Sci 70:1334–1342PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gowans GJ, Hawley SA, Ross FA, Hardie DG (2013) AMP is a true physiological regulator of AMP-activated protein kinase, both by allosteric activation and by enhancing net phosphorylation. Cell Metab 18:556–566PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gurevich-Panigrahi T, Panigrahi S, Wiechec E, Los M (2009) Obesity: pathophysiology and clinical management. Curr Med Chem 16:506–521PubMedCrossRefGoogle Scholar
  37. Hanefeld M, Pfutzner A, Forst T, Kleine I, Fuchs W (2011) Double-blind, randomized, multicentre, and active comparator controlled investigation of the effect of pioglitazone, metformin, and the combination of both on cardiovascular risk in patients with type 2 diabetes receiving stable basal insulin therapy: the Piocomb study. Cardiovasc Diabetol 10:65PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hardie DG (2008) AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes 32:S7–S12CrossRefGoogle Scholar
  39. Hardie DG (2014) AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu Rev Nutr 34:31–55PubMedCrossRefGoogle Scholar
  40. Hardie DG (2015) Molecular pathways: is AMPK a friend or a foe in cancer? Clin Cancer Res 21:3836–3840PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hardie DG, Ashford ML (2014) AMPK: regulating energy balance at the cellular and whole body levels. Physiology (Bethesda) 29:99–107Google Scholar
  42. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Bio 13:251–262CrossRefGoogle Scholar
  43. Hattori Y, Suzuki K, Hattori S, Kasai K (2006) Metformin inhibits cytokine-induced nuclear factor kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension 47:1183–1188PubMedCrossRefGoogle Scholar
  44. Hernández-Aguilera A, Rull A, Rodríguez-Gallego E, Riera-Borrull M, Luciano-Mateo F, Camps J, Menéndez JA, Joven J (2013) Mitochondrial dysfunction: a basic mechanism in inflammation-related non-communicable diseases and therapeutic opportunities. Mediators Inflamm 2013:135698PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hutley L, Prins JB (2005) Fat as an endocrine organ: relationship to the metabolic syndrome. Am J Med Sci 330:280–289PubMedCrossRefGoogle Scholar
  46. Hyun E, Ramachandran R, Hollenberg MD, Vergnolle N (2011) Mechanisms behind the anti-inflammatory actions of insulin. Crit Rev Immunol 31:307–340PubMedCrossRefGoogle Scholar
  47. Isoda K, Young JL, Zirlik A, MacFarlane LA, Tsuboi N, Gerdes N, Schönbeck U, Libby P (2006) Metformin inhibits proinflammatory responses and nuclear factor-kappaB in human vascular wall cells. Arterioscler Thromb Vasc Biol 26:611–617PubMedCrossRefGoogle Scholar
  48. Jeyabalan J, Shah M, Viollet B, Chenu C (2012) AMP-activated protein kinase pathway and bone metabolism. J Endocrinol 212:277–290PubMedCrossRefGoogle Scholar
  49. Johnson DT, Harris RA, French S, Blair PV, You J, Bemis KG, Wang M, Balaban R (2007) Tissue heterogeneity of the mammalian mitochondrial proteome. Am J Physiol Cell Physiol 292:C689–C697PubMedCrossRefGoogle Scholar
  50. Jucker BM, Dufour S, Ren J, Cao X, Previs SF, Underhill B, Cadman KS, Shulman GI (2001) Assessment of mitochondrial energy coupling in vivo by 13C/31P NMR. Proc Natl Acad Sci USA 97:6880–6884CrossRefGoogle Scholar
  51. Kaur J (2014) A comprehensive review on metabolic syndrome. Cardiol Res Pract 2014:943162PubMedPubMedCentralGoogle Scholar
  52. Kim SA, Choi HC (2012) Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells. Biochem Biophys ResCommun 425:866–872CrossRefGoogle Scholar
  53. Kola B, Hubina E, Tucci SA et al (2005) Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J Biol Chem 280:25196–25201PubMedCrossRefGoogle Scholar
  54. Kubota N, Yano W, Kubota T, Yamauchi T, Itoh S, Kumagai H, Kozono H, Takamoto I, Okamoto S, Shiuchi T, Suzuki R, Satoh H, Tsuchida A, Moroi M, Sugi K, Noda T, Ebinuma H, Ueta Y, Kondo T, Araki E, Ezaki O, Nagai R, Tobe K, Terauchi Y, Ueki K, Minokoshi Y, Kadowaki T (2007) Adiponectin stimulates AMP activated protein kinase in the hypothalamus and increases food intake. Cell Metab 6:55–68PubMedCrossRefGoogle Scholar
  55. Lamb RE, Goldstein BJ (2008) Modulating an oxidative-inflammatory cascade: potential new treatment strategy for improving glucose metabolism, insulin resistance, and vascular function. Int J Clin Pract 62:1087–1095PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lamers D, Famulla S, Wronkowitz N, Hartwig S, Lehr S, Ouwens DM, Eckardt K, Kaufman JM, Ryden M, Müller S, Hanisch FG, Ruige J, Arner P, Sell H, Eckel J (2011) Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes 60:1917–1925PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lane N (2006) Powerhouse of disease. Nature 440:600–602PubMedCrossRefGoogle Scholar
  58. Lane N, Martin W (2010) The energetics of genome complexity. Nature 21:929–934CrossRefGoogle Scholar
  59. Lau DCW, Dhillon B, Yan H, Szmitko PE, Verma S (2005) Adipokines: molecular links between obesity and atheroslcerosis. Am J Physiol Heart Circ Physiol 288:H2031–H2041PubMedCrossRefGoogle Scholar
  60. LeBrasseur N, Kelly M, Tsao TS, Farmer SR, Saha AK, Ruderman NB, Tomas E (2006) Thiazolidinediones can rapidly activate AMP-activated protein kinase in mammalian tissues. Am J Physiol Endocrinol Metab 291:E175–E181PubMedCrossRefGoogle Scholar
  61. Lee HK, Cho YM, Kwak SH, Lim S, Park KS, Shim EB (2010) Mitochondrial dysfunction and metabolic syndrome—looking for environmental factors. Biochim Biophys Acta 1800:282–289PubMedCrossRefGoogle Scholar
  62. Liu M, Liu F (2010) Transcriptional and post-translational regulation of adiponectin. Biochem J 425:41–52CrossRefGoogle Scholar
  63. Lockwood TD (2010) The lysosome among targets of metformin: new anti-inflammatory uses for an old drug? Expert Opin Ther Targets 14:467–478PubMedCrossRefGoogle Scholar
  64. Lopez-Lluch G, Irusta PM, Navas P, de Cabo R (2008) Mitochondrial biogenesis and healthy aging. Exp Gerontol 43:813–819PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404PubMedCrossRefGoogle Scholar
  66. Marfella R, D’Amico M, Esposito K, Baldi A, Di Filippo C, Siniscalchi M, Sasso FC, Portoghese M, Cirillo F, Cacciapuoti F, Carbonara O, Crescenzi B, Baldi F, Ceriello A, Nicoletti GF, D’Andrea F, Verza M, Coppola L, Rossi F, Giugliano D (2006) The ubiquitin-proteasome system and inflammatory activity in dia-betic atherosclerotic plaques: effects of rosiglitazone treatment. Diabetes 55:622–632PubMedCrossRefGoogle Scholar
  67. Marselli L, Thorne J, Dahiya S, Sgroi DC, Sharma A, Bonner-Weir S, Marchetti P, Weir GC (2010) Gene expression profiles of Beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS One 5:e11499PubMedPubMedCentralCrossRefGoogle Scholar
  68. Matejkova O, Mustard KJ, Sponarova J et al (2004) Possible involvement of AMP-activated protein kinase in obesity resistance induced by respiratory uncoupling in white fat. FEBS Lett 569:245–248PubMedCrossRefGoogle Scholar
  69. Medzhitov R (2010) Inflammation 2010: new adventures of an old flame. Cell 140:771–776PubMedCrossRefGoogle Scholar
  70. Miles JM, Jensen MD (2005) Counterpoint: visceral adiposity is not causally related to insulin resistance. Diabetes Care 28:2326–2328PubMedCrossRefGoogle Scholar
  71. Minokoshi Y, Kim YB, Peroni OD et al (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:339–343PubMedCrossRefGoogle Scholar
  72. Minokoshi Y, Alquier T, Furukawa N et al (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428:569–574PubMedCrossRefGoogle Scholar
  73. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148PubMedCrossRefGoogle Scholar
  74. O’Neill LA, Hardie DG (2013) Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493:346–355PubMedCrossRefGoogle Scholar
  75. Olijhoek JK, Van Der Graaf Y, Banga J-D, Algra A, Rabelink TJ, Visseren FLJ (2004) The metabolic syndrome is associated with advanced vascular damage in patients with coronary heart disease, stroke, peripheral arterial disease or abdominal aortic aneurysm. Eur Heart J 25:342–348PubMedCrossRefGoogle Scholar
  76. Ouchi N, Kihara S, Arita Y et al (2000) Adiponectin, an adipocytederived plasma protein, inhibits endothelial NF-kB signaling through a cAMP-dependent pathway. Circulation 102:1296–1301PubMedCrossRefGoogle Scholar
  77. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300:1140–1142PubMedPubMedCentralCrossRefGoogle Scholar
  78. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671PubMedPubMedCentralCrossRefGoogle Scholar
  79. Pfützner A, Marx N, Lübben G, Langenfeld M, Walcher D, Konrad T, Forst T (2005) Improvement of cardiovascular risk markers by pioglitazone is independent from glycemic control: results from the pioneer study. J Am Coll Cardiol 45:1925–1931PubMedCrossRefGoogle Scholar
  80. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM (2001) C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286:327–334PubMedCrossRefGoogle Scholar
  81. Qiang W, Weiqiang K, Qing Z, Pengju Z, Yi L (2007) Aging impairs insulin-stimulated glucose uptake in rat skeletal muscle via suppressing AMPKalpha. Exp Mol Med 39:535–543PubMedCrossRefGoogle Scholar
  82. Reznick RM, Zong H, Li J, Morino K, Moore IK, Yu HJ, Liu ZX, Dong J, Mustard KJ, Hawley SA, Befroy D, Pypaert M, Hardie DG, Young LH, Shulman GI (2007) Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab 5:151–156PubMedPubMedCentralCrossRefGoogle Scholar
  83. Rich PR (2003) The cost of living. Nature 421:583PubMedCrossRefGoogle Scholar
  84. Rocher C, Taanman JW, Pierron D, Faustin B, Benard G, Rossignol R, Malgat M, Pedespan L, Letellier T (2008) Influence of mitochondrial DNA level on cellular energy metabolism: implications for mitochondrial diseases. J Bioenerg Biomembr 40:59–67PubMedCrossRefGoogle Scholar
  85. Rong JX, Qiu Y, Hansen MK et al (2007) Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone. Diabetes 56:1751–1760PubMedCrossRefGoogle Scholar
  86. Rylova SN, Albertioni F, Flygh G, Eriksson S (2005) Activity profiles of deoxynucleoside kinases and 5′-nucleotidases in cultured adipocytes and myoblastic cells: insights into mitochondrial toxicity of nucleoside analogs. Biochem Pharmacol 69:951–960PubMedCrossRefGoogle Scholar
  87. Schapira AH (2006) Mitochondrial disease. Lancet 368:70–82PubMedCrossRefGoogle Scholar
  88. Scheen AJ, Esser N, Paquot N (2015) Antidiabetic agents: potential anti-inflammatory activity beyond glucose control. Diabetes Metab 41:183–194PubMedCrossRefGoogle Scholar
  89. Schwartz MW, Woods SC, Porte DJ et al (2000) Central nervous control of food intake. Nature 404:661–671PubMedGoogle Scholar
  90. Shi X, Burkart A, Nicoloro SM et al (2008) Paradoxical effect of mitochondrial respiratory chain impairment on insulin signaling and glucose transport in adipose cells. J Biol Chem 283:30658–30667PubMedPubMedCentralCrossRefGoogle Scholar
  91. Shirwany NA, Zou MH (2014) AMPK: a cellular metabolic and redox sensor. A minireview. Front Biosci (Landmark Ed) 19:447–474CrossRefGoogle Scholar
  92. Spiegelman BM, Flier JS (2001) Obesity regulation and energy balance. Cell 104:531–543PubMedCrossRefGoogle Scholar
  93. Stapleton D, Mitchelhill KI, Gao G, Widmer J, Michell BJ, Teh T, House CM, Fernandez CS, Cox T, Witters LA, Kemp BE (1996) Mammalian AMP-activated protein kinase subfamily. J Biol Chem 271:611–614PubMedCrossRefGoogle Scholar
  94. Strong K, Mathers C, Leeder S, Beaglehole R (2005) Preventing chronic diseases: how many lives can we save? Lancet 366:1578–1582PubMedCrossRefGoogle Scholar
  95. Szanto A, Nagy L (2008) The many faces of PPARgamma: anti-inflammatory by any means? Immunobiology 213:789–803PubMedCrossRefGoogle Scholar
  96. Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT (2010) Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Signal 12:503–535PubMedPubMedCentralCrossRefGoogle Scholar
  97. Tomas E, Tsao TS, Saha AK et al (2002) Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci 99:16309–16313PubMedPubMedCentralCrossRefGoogle Scholar
  98. Twig G, Hyde B, Shirihai OS (2008) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta 1777:1092–1097PubMedCrossRefGoogle Scholar
  99. Vasamsetti SB, Karnewar S, Kanugula AK, Thatipalli AR, Kumar JM, Kotamraju S (2015) Metformin inhibits monocyte-to-macrophage differentiation via AMPK mediated inhibition of STAT3 activation: potential role in atherosclerosis. Diabetes 64:2028–2041PubMedCrossRefGoogle Scholar
  100. Virtue S, Even P, Vidal-Puig A (2012) Below thermoneutrality, changes in activity do not drive changes in total daily energy expenditure between groups of mice. Cell Metab 16:665–671PubMedPubMedCentralCrossRefGoogle Scholar
  101. Westermann B (2008) Molecular machinery of mitochondrial fusion and fission. J Biol Chem 283:13501–13505PubMedCrossRefGoogle Scholar
  102. Williams RS (1986) Mitochondrial gene expression in mammalian striated muscle: evidence that variation in gene dosage is the major regulatory event. J Biol Chem 261:12390–12394PubMedGoogle Scholar
  103. Wilson-Fritch L, Burkart A, Bell G et al (2003) Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Mol Cell Biol 23:1085–1094PubMedPubMedCentralCrossRefGoogle Scholar
  104. Wilson-Fritch L, Nicoloro S, Chouinard M et al (2004) Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Invest 114:1281–1289PubMedPubMedCentralCrossRefGoogle Scholar
  105. Winder WW, Hardie DG (1999) AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol 277:E1–E10PubMedGoogle Scholar
  106. Xydakis AM, Case CC, Jones PH et al (2004) Adiponectin, inflammation, and the expression of the metabolic syndrome in obese individuals: the impact of rapid weight lose through caloric restriction. J Clin Endocrinol Metab 89:2697–2703PubMedCrossRefGoogle Scholar
  107. Zhang Y, Proenca R, Maffei M et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432PubMedCrossRefGoogle Scholar
  108. Zhang BB, Zhou G, Li C (2009) AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 5:407–416CrossRefGoogle Scholar
  109. Zhou G, Myers R, Li Y et al (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174PubMedPubMedCentralCrossRefGoogle Scholar
  110. Zuliani G, Volpato S, Blé A, Bandinelli S, Corsi AM, Lauretani F, Paolisso G, Fellin R, Ferrucci L (2007) High interleukin-6 plasma levels are associated with low HDL-C levels in communitydwelling older adults: the InChianti study. Atherosclerosis 192:384–390PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pedro Bullon
    • 1
    Email author
  • Fabiola Marin-Aguilar
    • 2
  • Lourdes Roman-Malo
    • 3
  1. 1.Department of Oral Medicine and Periodontology, Dental SchoolUniversity of SevilleSevilleSpain
  2. 2.Departament of Oral Medicine and PeriodontologyMinistry of Education, Culture and SportSevilleSpain
  3. 3.Departament of Oral Medicine and PeriodontologyUniversity of SevilleSevilleSpain

Personalised recommendations