Role of AMP-Activated Protein Kinase for Regulating Post-exercise Insulin Sensitivity

  • Rasmus Kjøbsted
  • Jørgen F. P. Wojtaszewski
  • Jonas T. TreebakEmail author
Part of the Experientia Supplementum book series (EXS, volume 107)


Skeletal muscle insulin resistance precedes development of type 2 diabetes (T2D). As skeletal muscle is a major sink for glucose disposal, understanding the molecular mechanisms involved in maintaining insulin sensitivity of this tissue could potentially benefit millions of people that are diagnosed with insulin resistance. Regular physical activity in both healthy and insulin-resistant individuals is recognized as the single most effective intervention to increase whole-body insulin sensitivity and thereby positively affect glucose homeostasis. A single bout of exercise has long been known to increase glucose disposal in skeletal muscle in response to physiological insulin concentrations. While this effect is identified to be restricted to the previously exercised muscle, the molecular basis for an apparent convergence between exercise- and insulin-induced signaling pathways is incompletely known. In recent years, we and others have identified the Rab GTPase-activating protein, TBC1 domain family member 4 (TBC1D4) as a target of key protein kinases in the insulin- and exercise-activated signaling pathways. Our working hypothesis is that the AMP-activated protein kinase (AMPK) is important for the ability of exercise to insulin sensitize skeletal muscle through TBC1D4. Here, we aim to provide an overview of the current available evidence linking AMPK to post-exercise insulin sensitivity.


AMP-activated protein kinase Exercise Skeletal muscle Glucose uptake TBC1D4 AS160 Insulin sensitivity 



Jesper B. Birk and Rasmus Quistgaard are acknowledged for skilled technical assistance at experiments presented in Figs. 5.1 and 5.2, respectively. RK and JTT were supported by the Novo Nordisk Foundation Center for Basic Metabolic Research. The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent research center at the University of Copenhagen partially funded by an unrestricted donation from the Novo Nordisk Foundation ( RK was also supported by Department of Nutrition, Exercise and Sports, University of Copenhagen. JFPW and the studies presented in this chapter were supported by the Danish Council for Independent Research | Medical Sciences, the Novo Nordisk Foundation, The Lundbeck Foundation, and The research program “Physical activity and nutrition for improvement of health” funded by the University of Copenhagen Excellence Program for Interdisciplinary Research. Some paragraphs from this text are in part based on a Ph.D. thesis written by RK.


  1. Abdul-Ghani MA, DeFronzo RA (2010) Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol 2010:476279. doi: 10.1155/2010/476279 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ai H, Ihlemann J, Hellsten Y et al (2002) Effect of fiber type and nutritional state on AICAR- and contraction-stimulated glucose transport in rat muscle. Am J Physiol Endocrinol Metab 282:E1291–E1300PubMedCrossRefGoogle Scholar
  3. Al-Khalili L, Krook A, Zierath JR, Cartee GD (2004) Prior serum- and AICAR-induced AMPK activation in primary human myocytes does not lead to subsequent increase in insulin-stimulated glucose uptake. Am J Physiol Endocrinol Metab 287:E553–E557. doi: 10.1152/ajpendo.00161.2004 PubMedCrossRefGoogle Scholar
  4. An D, Toyoda T, Taylor EB et al (2010) TBC1D1 regulates insulin- and contraction-induced glucose transport in mouse skeletal muscle. Diabetes 59:1358–1365. doi: 10.2337/db09-1266 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Annuzzi G, Riccardi G, Capaldo B, Kaijser L (1991) Increased insulin-stimulated glucose uptake by exercised human muscles one day after prolonged physical exercise. Eur J Clin Invest 21:6–12PubMedCrossRefGoogle Scholar
  6. Arias EB, Kim J, Funai K, Cartee GD (2007) Prior exercise increases phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle. Am J Physiol Endocrinol Metab 292:E1191–E1200. doi: 10.1152/ajpendo.00602.2006 PubMedCrossRefGoogle Scholar
  7. Aschenbach WG, Hirshman MF, Fujii N et al (2002) Effect of AICAR treatment on glycogen metabolism in skeletal muscle. Diabetes 51:567–573PubMedCrossRefGoogle Scholar
  8. Baas AF, Boudeau J, Sapkota GP et al (2003) Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J 22:3062–3072. doi: 10.1093/emboj/cdg292 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Babraj JA, Mustard K, Sutherland C et al (2009) Blunting of AICAR-induced human skeletal muscle glucose uptake in type 2 diabetes is dependent on age rather than diabetic status. Am J Physiol Endocrinol Metab 296:E1042–E1048. doi: 10.1152/ajpendo.90811.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Balon TW, Jasman AP (2001) Acute exposure to AICAR increases glucose transport in mouse EDL and soleus muscle. Biochem Biophys Res Commun 282:1008–1011. doi: 10.1006/bbrc.2001.4677 PubMedCrossRefGoogle Scholar
  11. Barnes BR, Marklund S, Steiler TL et al (2004) The 5′-AMP-activated protein kinase gamma3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. J Biol Chem 279:38441–38447. doi: 10.1074/jbc.M405533200 PubMedCrossRefGoogle Scholar
  12. Barnes BR, Glund S, Long YC et al (2005) 5′-AMP-activated protein kinase regulates skeletal muscle glycogen content and ergogenics. FASEB J 19:773–779. doi: 10.1096/fj.04-3221com PubMedCrossRefGoogle Scholar
  13. Baron AD, Brechtel G, Wallace P, Edelman SV (1988) Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am J Physiol 255:E769–E774PubMedGoogle Scholar
  14. Bergeron R, Russell RR, Young LH et al (1999) Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am J Physiol 276:E938–E944PubMedGoogle Scholar
  15. Birk JB, Wojtaszewski JFP (2006) Predominant alpha2/beta2/gamma3 AMPK activation during exercise in human skeletal muscle. J Physiol 577:1021–1032. doi: 10.1113/jphysiol.2006.120972 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bogardus C, Thuillez P, Ravussin E et al (1983) Effect of muscle glycogen depletion on in vivo insulin action in man. J Clin Invest 72:1605–1610. doi: 10.1172/JCI111119 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bonen A, Tan MH, Watson-Wright WM (1984) Effects of exercise on insulin binding and glucose metabolism in muscle. Can J Physiol Pharmacol 62:1500–1504PubMedCrossRefGoogle Scholar
  18. Boon H, Bosselaar M, Praet SFE et al (2008) Intravenous AICAR administration reduces hepatic glucose output and inhibits whole body lipolysis in type 2 diabetic patients. Diabetologia 51:1893–1900. doi: 10.1007/s00125-008-1108-7 PubMedCrossRefGoogle Scholar
  19. Bosselaar M, Boon H, van Loon LJC et al (2009) Intra-arterial AICA-riboside administration induces NO-dependent vasodilation in vivo in human skeletal muscle. Am J Physiol Endocrinol Metab 297:E759–E766. doi: 10.1152/ajpendo.00141.2009 PubMedCrossRefGoogle Scholar
  20. Boudeau J, Baas AF, Deak M et al (2003) MO25α/β interact with STRADα/β enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J 22:5102–5114. doi: 10.1093/emboj/cdg490 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bruss MD, Arias EB, Lienhard GE, Cartee GD (2005) Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity. Diabetes 54:41–50. doi: 10.2337/diabetes.54.1.41 PubMedCrossRefGoogle Scholar
  22. Cartee GD (2015a) Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle. Diabetologia 58:19–30. doi: 10.1007/s00125-014-3395-5 Google Scholar
  23. Cartee GD (2015b) Mechanisms for greater insulin-stimulated glucose uptake in normal and insulin resistant skeletal muscle after acute exercise. Am J Physiol Endocrinol Metab. doi: 10.1152/ajpendo.00416.2015 Google Scholar
  24. Cartee GD, Holloszy JO (1990) Exercise increases susceptibility of muscle glucose transport to activation by various stimuli. Am J Physiol 258:E390–E393PubMedGoogle Scholar
  25. Cartee GD, Young DA, Sleeper MD et al (1989) Prolonged increase in insulin-stimulated glucose transport in muscle after exercise. Am J Physiol 256:E494–E499PubMedGoogle Scholar
  26. Castorena CM, Arias EB, Sharma N, Cartee GD (2014) Post-exercise improvement in insulin-stimulated glucose uptake occurs concomitant with greater AS160 phosphorylation in muscle from normal and insulin resistant rats. Diabetes 63:1–37. doi: 10.2337/db13-1686 CrossRefGoogle Scholar
  27. Chadt A, Immisch A, de Wendt C et al (2015) Deletion of both Rab-GTPase–activating proteins TBC1D1 and TBC1D4 in mice eliminates insulin- and AICAR-stimulated glucose transport [corrected]. Diabetes 64:746–759. doi: 10.2337/db14-0368 PubMedCrossRefGoogle Scholar
  28. Chen ZP, McConell GK, Michell BJ et al (2000) AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation. Am J Physiol Endocrinol Metab 279:E1202–E1206. doi: 10.1007/s003390201284 PubMedGoogle Scholar
  29. Chen ZP, Stephens TJ, Murthy S et al (2003) Effect of exercise intensity on skeletal muscle AMPK signaling in humans. Diabetes 52:2205–2212. doi: 10.2337/diabetes.52.9.2205 PubMedCrossRefGoogle Scholar
  30. Chen S, Murphy J, Toth R et al (2008) Complementary regulation of TBC1D1 and AS160 by growth factors, insulin and AMPK activators. Biochem J 409:449–459. doi: 10.1042/BJ20071114 PubMedCrossRefGoogle Scholar
  31. Chibalin AV, Yu M, Ryder JW et al (2000) Exercise-induced changes in expression and activity of proteins involved in insulin signal transduction in skeletal muscle: differential effects on insulin-receptor substrates 1 and 2. Proc Natl Acad Sci USA 97:38–43. doi: 10.1073/pnas.97.1.38 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Coderre L, Kandror KV, Vallega G, Pilch PF (1995) Identification and characterization of an exercise-sensitive pool of glucose transporters in skeletal muscle. J Biol Chem 270:27584–27588. doi: 10.1074/jbc.270.46.27584 PubMedCrossRefGoogle Scholar
  33. Corton JM, Gillespie JG, Hawley SA, Hardie DG (1995) 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem 229:558–565. doi: 10.1111/j.1432-1033.1995.0558k.x PubMedCrossRefGoogle Scholar
  34. Cuthbertson DJ, Babraj JA, Mustard KJW et al (2007) 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside acutely stimulates skeletal muscle 2-deoxyglucose uptake in healthy men. Diabetes 56:2078–2084. doi: 10.2337/db06-1716 PubMedCrossRefGoogle Scholar
  35. Davies SP, Helps NR, Cohen PTW, Hardie DG (1995) 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2Cα and native bovine protein phosphatase-2AC. FEBS Lett 377:421–425. doi: 10.1016/0014-5793(95)01368-7 PubMedCrossRefGoogle Scholar
  36. Davis TA, Klahr S, Tegtmeyer ED et al (1986) Glucose metabolism in epitrochlearis muscle of acutely exercised and trained rats. Am J Physiol 250:E137–E143PubMedGoogle Scholar
  37. Day P, Sharff A, Parra L et al (2007) Structure of a CBS-domain pair from the regulatory γ1 subunit of human AMPK in complex with AMP and ZMP. Acta Crystallogr Sect D Biol Crystallogr 63:587–596. doi: 10.1107/S0907444907009110 CrossRefGoogle Scholar
  38. DeFronzo RA (1988) Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 37:667–687PubMedCrossRefGoogle Scholar
  39. DeFronzo R, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(Suppl 2):S157–S163. doi: 10.2337/dc09-S302 PubMedPubMedCentralCrossRefGoogle Scholar
  40. DeFronzo RA, Ferrannini E, Hendler R et al (1983) Regulation of splanchnic and peripheral glucose uptake by insulin and hyperglycemia in man. Diabetes 32:35–45PubMedCrossRefGoogle Scholar
  41. Derave W, Ai H, Ihlemann J et al (2000a) Dissociation of AMP-activated protein kinase activation and glucose transport in contracting slow-twitch muscle. Diabetes 49:1281–1287. doi: 10.2337/diabetes.49.8.1281 PubMedCrossRefGoogle Scholar
  42. Derave W, Hansen BF, Lund S et al (2000b) Muscle glycogen content affects insulin-stimulated glucose transport and protein kinase B activity. Am J Physiol Endocrinol Metab 279:E947–E955PubMedGoogle Scholar
  43. Devlin JT, Horton ES (1985) Effects of prior high-intensity exercise on glucose metabolism in normal and insulin-resistant men. Diabetes 34:973–979. doi: 10.2337/diabetes.34.10.973 PubMedCrossRefGoogle Scholar
  44. Devlin JT, Hirshman M, Horton ED, Horton ES (1987) Enhanced peripheral and splanchnic insulin sensitivity in NIDDM men after single bout of exercise. Diabetes 36:434–439. doi: 10.2337/diabetes.36.4.434 PubMedCrossRefGoogle Scholar
  45. Dokas J, Chadt A, Nolden T et al (2013) Conventional knockout of Tbc1d1 in mice impairs insulin- and AICAR-stimulated glucose uptake in skeletal muscle. Endocrinology 154:3502–3514. doi: 10.1210/en.2012-2147 PubMedCrossRefGoogle Scholar
  46. Douen AG, Ramlal T, Klip A et al (1989) Exercise-induced increase in glucose transporters in plasma membranes of rat skeletal muscle. Endocrinology 124(6):449–454PubMedCrossRefGoogle Scholar
  47. Douen AG, Ramlal T, Cartee GD, Klip A (1990) Exercise modulates the insulin-induced translocation of glucose transporters in rat skeletal muscle. FEBS Lett 261:256–260. doi: 10.1016/0014-5793(90)80566-2 PubMedCrossRefGoogle Scholar
  48. Ducommun S, Wang HY, Sakamoto K et al (2012) Thr649Ala-AS160 knock-in mutation does not impair contraction/AICAR-induced glucose transport in mouse muscle. Am J Physiol Endocrinol Metab 302:E1036–E1043. doi: 10.1152/ajpendo.00379.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Dumke CL, Kim J, Arias EB, Cartee GD (2002) Role of kallikrein-kininogen system in insulin-stimulated glucose transport after muscle contractions. J Appl Physiol 92:657–664. doi: 10.1152/japplphysiol.00854.2001 PubMedCrossRefGoogle Scholar
  50. Durante PE, Mustard KJ, Park S-H et al (2002) Effects of endurance training on activity and expression of AMP-activated protein kinase isoforms in rat muscles. Am J Physiol Endocrinol Metab 283:E178–E186. doi: 10.1152/ajpendo.00404.2001 PubMedCrossRefGoogle Scholar
  51. Fazakerley DJ, Holman GD, Marley A et al (2010) Kinetic evidence for unique regulation of GLUT4 trafficking by insulin and AMP-activated protein kinase activators in L6 myotubes. J Biol Chem 285:1653–1660. doi: 10.1074/jbc.M109.051185 PubMedCrossRefGoogle Scholar
  52. Fentz J, Kjøbsted R, Birk JB et al (2015) AMPKα is critical for enhancing skeletal muscle fatty acid utilization during in vivo exercise in mice. FASEB J 29:1725–1738. doi: 10.1096/fj.14-266650 PubMedCrossRefGoogle Scholar
  53. Fisher JS, Gao J, Han D-H et al (2002) Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin. Am J Physiol Endocrinol Metab 282:E18–E23. doi: 10.1152/ajpendo.00477.2004 PubMedCrossRefGoogle Scholar
  54. Fogt DL, Pan S, Lee S et al (2004) Effect of glycogen synthase overexpression on insulin-stimulated muscle glucose uptake and storage. Am J Physiol Endocrinol Metab 286:E363–E369. doi: 10.1152/ajpendo.00115.2003\r00115.2003 [pii]PubMedCrossRefGoogle Scholar
  55. Frøsig C, Jørgensen SB, Hardie DG et al (2004) 5′-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab 286:E411–E417. doi: 10.1152/ajpendo.00317.2003 PubMedCrossRefGoogle Scholar
  56. Frøsig C, Sajan MP, Maarbjerg SJ et al (2007) Exercise improves phosphatidylinositol-3,4,5-trisphosphate responsiveness of atypical protein kinase C and interacts with insulin signalling to peptide elongation in human skeletal muscle. J Physiol 582:1289–1301. doi: 10.1113/jphysiol.2007.136614 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Frøsig C, Roepstorff C, Brandt N et al (2009) Reduced malonyl-CoA content in recovery from exercise correlates with improved insulin-stimulated glucose uptake in human skeletal muscle. Am J Physiol Endocrinol Metab 296:E787–E795. doi: 10.1152/ajpendo.90556.2008 PubMedCrossRefGoogle Scholar
  58. Frøsig C, Pehmøller C, Birk JB et al (2010) Exercise-induced TBC1D1 Ser237 phosphorylation and 14-3-3 protein binding capacity in human skeletal muscle. J Physiol 588:4539–4548. doi: 10.1113/jphysiol.2010.194811 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Fujii N, Hayashi T, Hirshman MF et al (2000) Exercise induces isoform-specific increase in 5′AMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun 273:1150–1155. doi: 10.1006/bbrc.2000.3073 PubMedCrossRefGoogle Scholar
  60. Fujii N, Boppart MD, Dufresne SD et al (2004) Overexpression or ablation of JNK in skeletal muscle has no effect on glycogen synthase activity. Am J Physiol Cell Physiol 287:C200–C208. doi: 10.1152/ajpcell.00415.2003 PubMedCrossRefGoogle Scholar
  61. Fujii N, Hirshman MF, Kane EM et al (2005) AMP-activated protein kinase alpha2 activity is not essential for contraction- and hyperosmolarity-induced glucose transport in skeletal muscle. J Biol Chem 280:39033–39041. doi: 10.1074/jbc.M504208200 PubMedCrossRefGoogle Scholar
  62. Funai K, Cartee GD (2009) Inhibition of contraction-stimulated AMP-activated protein kinase inhibits contraction-stimulated increases in PAS-TBC1D1 and glucose transport without altering PAS-AS160 in rat skeletal muscle. Diabetes 58:1096–1104. doi: 10.2337/db08-1477 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Funai K, Schweitzer GG, Sharma N et al (2009) Increased AS160 phosphorylation, but not TBC1D1 phosphorylation, with increased postexercise insulin sensitivity in rat skeletal muscle. Am J Physiol Endocrinol Metab 297:E242–E251. doi: 10.1152/ajpendo.00194.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Funai K, Schweitzer GG, Castorena CM et al (2010) In vivo exercise followed by in vitro contraction additively elevates subsequent insulin-stimulated glucose transport by rat skeletal muscle. Am J Physiol Endocrinol Metab 298:E999–E1010. doi: 10.1152/ajpendo.00758.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Gao J, Gulve EA, Holloszy JO (1994) Contraction-induced increase in muscle insulin sensitivity: requirement for a serum factor. Am J Physiol 266:E186–E192PubMedGoogle Scholar
  66. Garcia-Roves PM, Osler ME, Holmström MH, Zierath JR (2008) Gain-of-function R225Q mutation in AMP-activated protein kinase γ3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle. J Biol Chem 283:35724–35734. doi: 10.1074/jbc.M805078200 PubMedCrossRefGoogle Scholar
  67. Garetto LP, Richter EA, Goodman MN, Ruderman NB (1984) Enhanced muscle glucose metabolism after exercise in the rat: the two phases. Am J Physiol 246:E471–E475. doi: 10.1172/JCI110517 PubMedGoogle Scholar
  68. Geiger PC, Han DH, Wright DC, Holloszy JO (2006) How muscle insulin sensitivity is regulated: testing of a hypothesis. Am J Physiol Endocrinol Metab 291:E1258–E1263. doi: 10.1152/ajpendo.00273.2006 PubMedCrossRefGoogle Scholar
  69. Geraghty KM, Chen S, Harthill JE et al (2007) Regulation of multisite phosphorylation and 14-3-3 binding of AS160 in response to IGF-1, EGF, PMA and AICAR. Biochem J 407:231–241. doi: 10.1042/BJ20070649 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Gowans GJ, Hardie DG (2014) AMPK: a cellular energy sensor primarily regulated by AMP. Biochem Soc Trans 42:71–75. doi: 10.1042/BST20130244 PubMedCrossRefGoogle Scholar
  71. Greiwe JS, Holloszy JO, Semenkovich CF (2000) Exercise induces lipoprotein lipase and GLUT-4 protein in muscle independent of adrenergic-receptor signaling. J Appl Physiol 89:176–181PubMedGoogle Scholar
  72. Gulve EA, Cartee GD, Zierath JR et al (1990) Reversal of enhanced muscle glucose transport after exercise: roles of insulin and glucose. Am J Physiol 259:E685–E691PubMedGoogle Scholar
  73. Hamada T, Arias EB, Cartee GD (2006) Increased submaximal insulin-stimulated glucose uptake in mouse skeletal muscle after treadmill exercise. J Appl Physiol 101:1368–1376. doi: 10.1152/japplphysiol.00416.2006 PubMedCrossRefGoogle Scholar
  74. Hansen PA, Nolte LA, Chen MM, Holloszy JO (1998) Increased GLUT-4 translocation mediates enhanced insulin sensitivity of muscle glucose transport after exercise. J Appl Physiol 85:1218–1222PubMedGoogle Scholar
  75. Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785. doi: 10.1038/nrm2249 PubMedCrossRefGoogle Scholar
  76. Hardie DG, Carling D, Gamblin SJ (2011) AMP-activated protein kinase: also regulated by ADP? Trends Biochem Sci 36:470–477. doi: 10.1016/j.tibs.2011.06.004 PubMedCrossRefGoogle Scholar
  77. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13:251–262. doi: 10.1038/nrm3311 PubMedCrossRefGoogle Scholar
  78. Hawley SA, Boudeau J, Reid JL et al (2003) Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2:28. doi: 10.1186/1475-4924-2-28 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Hawley SA, Pan DA, Mustard KJ et al (2005) Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2:9–19. doi: 10.1016/j.cmet.2005.05.009 PubMedCrossRefGoogle Scholar
  80. Hayashi T, Hirshman MF, Kurth EJ et al (1998) Evidence for 5′ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 47:1369–1373PubMedGoogle Scholar
  81. Hellsten Y, Sjödin B, Richter EA, Bangsbo J (1998) Urate uptake and lowered ATP levels in human muscle after high-intensity intermittent exercise. Am J Physiol 274:E600–E606PubMedGoogle Scholar
  82. Henin N, Vincent MF, Van den Berghe G (1996) Stimulation of rat liver AMP-activated protein kinase by AMP analogues. Biochim Biophys Acta 1290:197–203PubMedCrossRefGoogle Scholar
  83. Herrero-Martín G, Høyer-Hansen M, García-García C et al (2009) TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 28:677–685. doi: 10.1038/emboj.2009.8 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Hirshman MF, Wallberg-Henriksson H, Wardzala LJ et al (1988) Acute exercise increases the number of plasma membrane glucose transporters in rat skeletal muscle. FEBS Lett 238:235–239PubMedCrossRefGoogle Scholar
  85. Højlund K, Stæhr P, Hansen BF et al (2003) Increased phosphorylation of skeletal muscle glycogen synthase at NH2-terminal sites during physiological hyperinsulinemia in type 2 diabetes. Diabetes 52:1393–1402. doi: 10.2337/diabetes.52.6.1393 PubMedCrossRefGoogle Scholar
  86. Højlund K, Birk JB, Klein DK et al (2009) Dysregulation of glycogen synthase COOH- and NH2-terminal phosphorylation by insulin in obesity and type 2 diabetes mellitus. J Clin Endocrinol Metab 94:4547–4556. doi: 10.1210/jc.2009-0897 PubMedCrossRefGoogle Scholar
  87. Holloszy JO (2005) Exercise-induced increase in muscle insulin sensitivity. J Appl Physiol 99:338–343. doi: 10.1152/japplphysiol.00123.2005 PubMedCrossRefGoogle Scholar
  88. Hoy AJ, Bruce CR, Cederberg A et al (2007) Glucose infusion causes insulin resistance in skeletal muscle of rats without changes in Akt and AS160 phosphorylation. Am J Physiol Endocrinol Metab 293:E1358–E1364. doi: 10.1152/ajpendo.00133.2007 PubMedCrossRefGoogle Scholar
  89. Hudson ER, Pan DA, James J et al (2003) A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr Biol 13:861–866. doi: 10.1016/S0960-9822(03)00249-5 PubMedCrossRefGoogle Scholar
  90. Hurley RL, Anderson KA, Franzone JM et al (2005) The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 280:29060–29066. doi: 10.1074/jbc.M503824200 PubMedCrossRefGoogle Scholar
  91. Hwang J-T, Lee M, Jung S-N et al (2004) AMP-activated protein kinase activity is required for vanadate-induced hypoxia-inducible factor 1alpha expression in DU145 cells. Carcinogenesis 25:2497–2507. doi: 10.1093/carcin/bgh253 PubMedCrossRefGoogle Scholar
  92. Inoki K, Zhu T, Guan K-L (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590. doi: 10.1016/S0092-8674(03)00929-2 PubMedCrossRefGoogle Scholar
  93. Inyard AC, Chong DG, Klibanov AL, Barrett EJ (2009) Muscle contraction, but not insulin, increases microvascular blood volume in the presence of free fatty acid-induced insulin resistance. Diabetes 58:2457–2463. doi: 10.2337/db08-1077 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Iwabe M, Kawamoto E, Koshinaka K, Kawanaka K (2014) Increased postexercise insulin sensitivity is accompanied by increased AS160 phosphorylation in slow-twitch soleus muscle. Physiol Rep 2:1–9. doi: 10.14814/phy2.12162 Google Scholar
  95. Jensen J, Lai Y-C (2009) Regulation of muscle glycogen synthase phosphorylation and kinetic properties by insulin, exercise, adrenaline and role in insulin resistance. Arch Physiol Biochem 115:13–21. doi: 10.1080/13813450902778171 PubMedCrossRefGoogle Scholar
  96. Jensen J, Aslesen R, Ivy JL, Brørs O (1997) Role of glycogen concentration and epinephrine on glucose uptake in rat epitrochlearis muscle. Am J Physiol 272:E649–E655PubMedGoogle Scholar
  97. Jensen J, Jebens E, Brennesvik EO et al (2006) Muscle glycogen inharmoniously regulates glycogen synthase activity, glucose uptake, and proximal insulin signaling. Am J Physiol Endocrinol Metab 290:E154–E162. doi: 10.1152/ajpendo.00330.2005 PubMedCrossRefGoogle Scholar
  98. Jensen TE, Rose AJ, Hellsten Y et al (2007a) Caffeine-induced Ca(2+) release increases AMPK-dependent glucose uptake in rodent soleus muscle. Am J Physiol Endocrinol Metab 293:E286–E292. doi: 10.1152/ajpendo.00693.2006 PubMedCrossRefGoogle Scholar
  99. Jensen TE, Rose AJ, Jørgensen SB et al (2007b) Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction. Am J Physiol Endocrinol Metab 292:E1308–E1317. doi: 10.1152/ajpendo.00456.2006 PubMedCrossRefGoogle Scholar
  100. Jensen TE, Schjerling P, Viollet B et al (2008) AMPK alpha1 activation is required for stimulation of glucose uptake by twitch contraction, but not by H2O2, in mouse skeletal muscle. PLoS One 3:e2102. doi: 10.1371/journal.pone.0002102 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Jensen TE, Wojtaszewski JFP, Richter EA (2009) AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient? Acta Physiol (Oxf) 196:155–174. doi: 10.1111/j.1748-1716.2009.01979.x CrossRefGoogle Scholar
  102. Jensen TE, Ross FA, Kleinert M et al (2015) PT-1 selectively activates AMPK-γ1 complexes in mouse skeletal muscle, but activates all three γ subunit complexes in cultured human cells by inhibiting the respiratory chain. Biochem J 467:461–472. doi: 10.1042/BJ20141142 PubMedCrossRefGoogle Scholar
  103. Jeppesen J, Maarbjerg SJ, Jordy AB et al (2013) LKB1 regulates lipid oxidation during exercise independently of AMPK. Diabetes 62:1490–1499. doi: 10.2337/db12-1160 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Jessen N, Pold R, Buhl ES et al (2003) Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles. J Appl Physiol 94:1373–1379. doi: 10.1152/japplphysiol.00250.2002 PubMedCrossRefGoogle Scholar
  105. Jessen N, An D, Lihn AS et al (2011) Exercise increases TBC1D1 phosphorylation in human skeletal muscle. Am J Physiol Endocrinol Metab 301:E164–E171. doi: 10.1152/ajpendo.00042.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Jørgensen SB, Nielsen JN, Birk JB et al (2004a) The α2-5′ AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading. Diabetes 53:3074–3081. doi: 10.2337/diabetes.53.12.3074 PubMedCrossRefGoogle Scholar
  107. Jørgensen SB, Viollet B, Andreelli F et al (2004b) Knockout of the alpha2 but not alpha1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside but not contraction-induced glucose uptake in skeletal muscle. J Biol Chem 279:1070–1079. doi: 10.1074/jbc.M306205200 PubMedCrossRefGoogle Scholar
  108. Jørgensen SB, Wojtaszewski JFP, Viollet B et al (2005) Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle. FASEB J 19:1146–1148. doi: 10.1096/fj.04-3144fje PubMedGoogle Scholar
  109. Ju J-S, Gitcho MA, Gitcho CA et al (2007) Potentiation of insulin-stimulated glucose transport by the AMP-activated protein kinase. Am J Physiol Cell Physiol 292:C564–C572. doi: 10.1152/ajpcell.00269.2006 PubMedCrossRefGoogle Scholar
  110. Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1:15–25. doi: 10.1016/j.cmet.2004.12.003 PubMedCrossRefGoogle Scholar
  111. Karlsson HKR, Chibalin AV, Koistinen HA et al (2009) Kinetics of GLUT4 trafficking in rat and human skeletal muscle. Diabetes 58:847–854. doi: 10.2337/db08-1539 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Kaushik VK, Young ME, Dean DJ et al (2001) Regulation of fatty acid oxidation and glucose metabolism in rat soleus muscle: effects of AICAR. Am J Physiol Endocrinol Metab 281:E335–E340PubMedGoogle Scholar
  113. Kazgan N, Williams T, Forsberg LJ, Brenman JE (2010) Identification of a nuclear export signal in the catalytic subunit of AMP-activated protein kinase. Mol Biol Cell 21:3433–3442. doi: 10.1091/mbc.E10-04-0347 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Kelly M, Keller C, Avilucea PR et al (2004) AMPK activity is diminished in tissues of IL-6 knockout mice: the effect of exercise. Biochem Biophys Res Commun 320:449–454. doi: 10.1016/j.bbrc.2004.05.188 PubMedCrossRefGoogle Scholar
  115. Kim J, Solis RS, Arias EB, Cartee GD (2004) Postcontraction insulin sensitivity: relationship with contraction protocol, glycogen concentration, and 5′ AMP-activated protein kinase phosphorylation. J Appl Physiol 96:575–583. doi: 10.1152/japplphysiol.00909.2003 PubMedCrossRefGoogle Scholar
  116. Kishi K, Muromoto N, Nakaya Y et al (1998) Bradykinin directly triggers GLUT4 translocation via an insulin-independent pathway. Diabetes 47:550–558PubMedCrossRefGoogle Scholar
  117. Kjøbsted R, Treebak JT, Fentz J et al (2015) Prior AICAR stimulation increases insulin sensitivity in mouse skeletal muscle in an AMPK-dependent manner. Diabetes 64:2042–2055. doi: 10.2337/db14-1402 PubMedCrossRefGoogle Scholar
  118. Kjøbsted R, Pedersen AJT, Hingst JR et al (2016) Intact regulation of the AMPK signaling network in response to exercise and insulin in skeletal muscle of male patients with type 2 diabetes – illumination of AMPK activation in recovery from exercise. Diabetes 65:1219–1230. doi: 10.2337/db15-1034 PubMedCrossRefGoogle Scholar
  119. Koh H-J, Brandauer J, Goodyear LJ (2008) LKB1 and AMPK and the regulation of skeletal muscle metabolism. Curr Opin Clin Nutr Metab Care 11:227–232. doi: 10.1097/MCO.0b013e3282fb7b76 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Koistinen HA, Galuska D, Chibalin AV et al (2003) 5-amino-imidazole carboxamide riboside increases glucose transport and cell-surface GLUT4 content in skeletal muscle from subjects with type 2 diabetes. Diabetes 52:1066–1072. doi: 10.2337/diabetes.52.5.1066 PubMedCrossRefGoogle Scholar
  121. Kolnes AJ, Birk JB, Eilertsen E et al (2015) Epinephrine-stimulated glycogen breakdown activates glycogen synthase and increases insulin-stimulated glucose uptake in epitrochlearis muscles. Am J Physiol Endocrinol Metab 308:E231–E240. doi: 10.1152/ajpendo.00282.2014 PubMedCrossRefGoogle Scholar
  122. Koshinaka K, Sano A, Howlett KF et al (2008) Effect of high-intensity intermittent swimming on postexercise insulin sensitivity in rat epitrochlearis muscle. Metabolism 57:749–756. doi: 10.1016/j.metabol.2008.01.014 PubMedCrossRefGoogle Scholar
  123. Koshinaka K, Kawasaki E, Hokari F, Kawanaka K (2009) Effect of acute high-intensity intermittent swimming on post-exercise insulin responsiveness in epitrochlearis muscle of fed rats. Metabolism 58:246–253. doi: 10.1016/j.metabol.2008.09.021 PubMedCrossRefGoogle Scholar
  124. Kraegen EW, Saha AK, Preston E et al (2006) Increased malonyl-CoA and diacylglycerol content and reduced AMPK activity accompany insulin resistance induced by glucose infusion in muscle and liver of rats. Am J Physiol Endocrinol Metab 290:E471–E479. doi: 10.1152/ajpendo.00316.2005 PubMedCrossRefGoogle Scholar
  125. Kramer HF, Witczak CA, Taylor EB et al (2006a) AS160 regulates insulin- and contraction-stimulated glucose uptake in mouse skeletal muscle. J Biol Chem 281:31478–31485. doi: 10.1074/jbc.M605461200 PubMedCrossRefGoogle Scholar
  126. Kramer HF, Witczak CA, Fujii N et al (2006b) Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle. Diabetes 55:2067–2076. doi: 10.2337/db06-0150 PubMedCrossRefGoogle Scholar
  127. Kraniou GN, Cameron-Smith D, Hargreaves M (2006) Acute exercise and GLUT4 expression in human skeletal muscle: influence of exercise intensity. J Appl Physiol 101:934–937. doi: 10.1152/japplphysiol.01489.2005 PubMedCrossRefGoogle Scholar
  128. Kristensen JM, Johnsen AB, Birk JB et al (2007) Absence of humoral mediated 5′AMP-activated protein kinase activation in human skeletal muscle and adipose tissue during exercise. J Physiol 585:897–909. doi: 10.1113/jphysiol.2007.143123 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Kristensen DE, Albers PH, Prats C et al (2015) Human muscle fibre type-specific regulation of AMPK and downstream targets by exercise. J Physiol 593:2053–2069. doi: 10.1113/jphysiol.2014.283267 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Kuo CH, Browning KS, Ivy JL (1999a) Regulation of GLUT4 protein expression and glycogen storage after prolonged exercise. Acta Physiol Scand 165:193–201. doi: 10.1046/j.1365-201x.1999.00489.x PubMedCrossRefGoogle Scholar
  131. Kuo CH, Hunt DG, Ding Z, Ivy JL (1999b) Effect of carbohydrate supplementation on postexercise GLUT-4 protein expression in skeletal muscle. J Appl Physiol 87:2290–2295PubMedGoogle Scholar
  132. Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, Winder WW (1999) 5′ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 48:1667–1671PubMedCrossRefGoogle Scholar
  133. Lantier L, Fentz J, Mounier R et al (2014) AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. FASEB J 28:3211–3224. doi: 10.1096/fj.14-250449 PubMedCrossRefGoogle Scholar
  134. Lebovitz HE (2001) Insulin resistance: definition and consequences. Exp Clin Endocrinol Diabetes 109:S135–S148. doi: 10.1055/s-2001-18576 PubMedCrossRefGoogle Scholar
  135. Lee AD, Hansen PA, Holloszy JO (1995) Wortmannin inhibits insulin-stimulated but not contraction-stimulated glucose transport activity in skeletal muscle. FEBS Lett 361:51–54. doi: 10.1016/0014-5793(95)00147-2 PubMedCrossRefGoogle Scholar
  136. Lee-Young RS, Koufogiannis G, Canny BJ, McConell GK (2008) Acute exercise does not cause sustained elevations in AMPK signaling or expression. Med Sci Sports Exerc 40:1490–1494. doi: 10.1249/MSS.0b013e318173a037 PubMedCrossRefGoogle Scholar
  137. Lee-Young RS, Griffee SR, Lynes SE et al (2009) Skeletal muscle AMP-activated protein kinase is essential for the metabolic response to exercise in vivo. J Biol Chem 284:23925–23934. doi: 10.1074/jbc.M109.021048 PubMedPubMedCentralCrossRefGoogle Scholar
  138. Lefort N, St-Amand E, Morasse S et al (2008) The alpha-subunit of AMPK is essential for submaximal contraction-mediated glucose transport in skeletal muscle in vitro. Am J Physiol Endocrinol Metab 295:E1447–E1454. doi: 10.1152/ajpendo.90362.2008 PubMedCrossRefGoogle Scholar
  139. Leick L, Plomgaard P, Grønløkke L et al (2010) Endurance exercise induces mRNA expression of oxidative enzymes in human skeletal muscle late in recovery. Scand J Med Sci Sports 20:593–599. doi: 10.1111/j.1600-0838.2009.00988.x PubMedCrossRefGoogle Scholar
  140. Lund S, Holman GD, Schmitz O, Pedersen O (1995) Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci USA 92:5817–5821. doi: 10.1073/pnas.92.13.5817 PubMedPubMedCentralCrossRefGoogle Scholar
  141. Maarbjerg SJ, Jørgensen SB, Rose AJ et al (2009) Genetic impairment of AMPKalpha2 signaling does not reduce muscle glucose uptake during treadmill exercise in mice. Am J Physiol Endocrinol Metab 297:E924–E934. doi: 10.1152/ajpendo.90653.2008 PubMedCrossRefGoogle Scholar
  142. Mahlapuu M, Johansson C, Lindgren K et al (2004) Expression profiling of the gamma-subunit isoforms of AMP-activated protein kinase suggests a major role for gamma3 in white skeletal muscle. Am J Physiol Endocrinol Metab 286:E194–E200. doi: 10.1152/ajpendo.00147.2003 PubMedCrossRefGoogle Scholar
  143. McConell GK, Lee-Young RS, Chen Z-P et al (2005) Short-term exercise training in humans reduces AMPK signalling during prolonged exercise independent of muscle glycogen. J Physiol 568:665–676. doi: 10.1113/jphysiol.2005.089839 PubMedPubMedCentralCrossRefGoogle Scholar
  144. McMahon JM, Signori E, Wells KE et al (2001) Optimisation of electrotransfer of plasmid into skeletal muscle by pretreatment with hyaluronidase – increased expression with reduced muscle damage. Gene Ther 8:1264–1270. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  145. Merrill GF, Kurth EJ, Hardie DG, Winder WW (1997) AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol 273:E1107–E1112PubMedGoogle Scholar
  146. Merry TL, Steinberg GR, Lynch GS, McConell GK (2010) Skeletal muscle glucose uptake during contraction is regulated by nitric oxide and ROS independently of AMPK. Am J Physiol Endocrinol Metab 298:E577–E585. doi: 10.1152/ajpendo.00239.2009 PubMedCrossRefGoogle Scholar
  147. Mikines KJ, Sonne B, Farrell PA et al (1988) Effect of physical exercise on sensitivity and responsiveness to insulin in humans. Am J Physiol 254:E248–E259PubMedGoogle Scholar
  148. Mikines KJ, Sonne B, Tronier B, Galbo H (1989) Effects of acute exercise and detraining on insulin action in trained men. J Appl Physiol 66:704–711PubMedCrossRefGoogle Scholar
  149. Minokoshi Y, Kim Y-B, Peroni OD et al (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:339–343. doi: 10.1038/415339a PubMedCrossRefGoogle Scholar
  150. Minokoshi Y, Alquier T, Furukawa N et al (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428:569–574. doi: 10.1038/nature02440 PubMedCrossRefGoogle Scholar
  151. Miyamoto L, Toyoda T, Hayashi T et al (2007) Effect of acute activation of 5′-AMP-activated protein kinase on glycogen regulation in isolated rat skeletal muscle. J Appl Physiol 102:1007–1013. doi: 10.1152/japplphysiol.01034.2006 PubMedCrossRefGoogle Scholar
  152. Moltke I, Grarup N, Jørgensen ME et al (2014) A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature 512:190–193. doi: 10.1038/nature13425 PubMedCrossRefGoogle Scholar
  153. Momcilovic M, Hong SP, Carlson M (2006) Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem 281:25336–25343. doi: 10.1074/jbc.M604399200 PubMedCrossRefGoogle Scholar
  154. Mortensen B, Hingst JR, Frederiksen N et al (2013) Effect of birth weight and 12 weeks of exercise training on exercise-induced AMPK signaling in human skeletal muscle. Am J Physiol Endocrinol Metab 304:E1379–E1390. doi: 10.1152/ajpendo.00295.2012 PubMedCrossRefGoogle Scholar
  155. Mu J, Brozinick JT, Valladares O et al (2001) A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell 7:1085–1094PubMedCrossRefGoogle Scholar
  156. Muoio DM, Seefeld K, Witters LA, Coleman RA (1999) AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. Biochem J 338(Pt 3):783–791. doi: 10.1042/0264-6021:3380783 PubMedPubMedCentralCrossRefGoogle Scholar
  157. Musi N, Fujii N, Hirshman MF et al (2001a) AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise. Diabetes 50:921–927. doi: 10.2337/diabetes.50.5.921 PubMedCrossRefGoogle Scholar
  158. Musi N, Hayashi T, Fujii N et al (2001b) AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle. Am J Physiol Endocrinol Metab 280:E677–E684PubMedGoogle Scholar
  159. Nesher R, Karl IE, Kipnis DM (1985) Dissociation of effects of insulin and contraction on glucose transport in rat epitrochlearis muscle. Am J Physiol 249:C226–C232PubMedGoogle Scholar
  160. Nielsen JN, Vissing J, Wojtaszewski JFP et al (2002) Decreased insulin action in skeletal muscle from patients with McArdle’s disease. Am J Physiol Endocrinol Metab 282:E1267–E1275. doi: 10.1152/ajpendo.00526.2001 PubMedCrossRefGoogle Scholar
  161. Nielsen JN, Mustard KJW, Graham DA et al (2003) 5′-AMP-activated protein kinase activity and subunit expression in exercise-trained human skeletal muscle. J Appl Physiol 94:631–641. doi: 10.1152/japplphysiol.00642.2002 PubMedCrossRefGoogle Scholar
  162. O’Neill HM, Maarbjerg SJ, Crane JD et al (2011) AMP-activated protein kinase (AMPK) beta1beta2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc Natl Acad Sci USA 108:16092–16097. doi: 10.1073/pnas.1105062108 PubMedPubMedCentralCrossRefGoogle Scholar
  163. Oakhill JS, Steel R, Chen Z-P et al (2011) AMPK is a direct adenylate charge-regulated protein kinase. Science 332(80):1433–1435. doi: 10.1126/science.1200094 PubMedCrossRefGoogle Scholar
  164. Pedersen AJT, Hingst JR, Friedrichsen M et al (2015) Dysregulation of muscle glycogen synthase in recovery from exercise in type 2 diabetes. Diabetologia 58:1569–1578. doi: 10.1007/s00125-015-3582-z PubMedCrossRefGoogle Scholar
  165. Pederson BA, Schroeder JM, Parker GE et al (2005) Glucose metabolism in mice lacking muscle glycogen synthase. Diabetes 54:3466–3473. doi: 10.1007/s10346-005-0027-7 PubMedCrossRefGoogle Scholar
  166. Pehmøller C, Treebak JT, Birk JB et al (2009) Genetic disruption of AMPK signaling abolishes both contraction- and insulin-stimulated TBC1D1 phosphorylation and 14-3-3 binding in mouse skeletal muscle. Am J Physiol Endocrinol Metab 297:E665–E675. doi: 10.1152/ajpendo.00115.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  167. Pehmøller C, Brandt N, Birk J (2012) Exercise alleviates lipid-induced insulin resistance in human skeletal muscle–signaling interaction at the level of TBC1 domain family member 4. Diabetes 61:2743–2752. doi: 10.2337/db11-1572 PubMedPubMedCentralCrossRefGoogle Scholar
  168. Perseghin G, Price TB, Petersen KF et al (1996) Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. N Engl J Med 335:1357–1362. doi: 10.1056/NEJM199610313351804 PubMedCrossRefGoogle Scholar
  169. Ploug T, Galbo H, Richter EA (1984) Increased muscle glucose uptake during contractions: no need for insulin. Am J Physiol 247:E726–E731. doi: 10.2337/diabetes.34.10.1041 PubMedGoogle Scholar
  170. Ploug T, Galbo H, Vinten J et al (1987) Kinetics of glucose transport in rat muscle: effects of insulin and contractions. Am J Physiol 253:E12–E20PubMedGoogle Scholar
  171. Ploug T, Van Deurs B, Ai H et al (1998) Analysis of GLUT4 distribution in whole skeletal muscle fibers: identification of distinct storage compartments that are recruited by insulin and muscle contractions. J Cell Biol 142:1429–1446. doi: 10.1083/jcb.142.6.1429 PubMedPubMedCentralCrossRefGoogle Scholar
  172. Polekhina G, Gupta A, Michell BJ et al (2003) AMPKß subunit targets metabolic stress sensing to glycogen. Curr Biol 13:867–871. doi: 10.1016/S PubMedCrossRefGoogle Scholar
  173. Ramanathan L, Sheth PR, Ogas P et al (2010) Purification and characterization of truncated human AMPK alpha 2 beta 2 gamma 3 heterotrimer from baculovirus-infected insect cells. Protein Expr Purif 70:13–22. doi: 10.1016/j.pep.2009.10.007 PubMedCrossRefGoogle Scholar
  174. Rattigan S, Wallis MG, Youd JM, Clark MG (2001) Exercise training improves insulin-mediated capillary recruitment in association with glucose uptake in rat hindlimb. Diabetes 50:2659–2665. doi: 10.2337/diabetes.50.12.2659 PubMedCrossRefGoogle Scholar
  175. Ren JM, Semenkovich CF, Gulve EA et al (1994) Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle. J Biol Chem 269:14396–14401. doi: 10.1210/me.2009-0437 PubMedGoogle Scholar
  176. Rett K, Wicklmayr M, Fink E et al (1989) Local generation of kinins in working skeletal muscle tissue in man. Biol Chem Hoppe Seyler 370:445–449PubMedCrossRefGoogle Scholar
  177. Richter EA, Garetto LP, Goodman MN, Ruderman NB (1982) Muscle glucose metabolism following exercise in the rat: increased sensitivity to insulin. J Clin Invest 69:785–793PubMedPubMedCentralCrossRefGoogle Scholar
  178. Richter EA, Garetto LP, Goodman MN, Ruderman NB (1984) Enhanced muscle glucose metabolism after exercise: modulation by local factors. Am J Physiol 246:E476–E482PubMedGoogle Scholar
  179. Richter EA, Ploug T, Galbo H (1985) Increased muscle glucose uptake after exercise. No need for insulin during exercise. Diabetes 34:1041–1048. doi: 10.2337/diabetes.34.10.1041 PubMedCrossRefGoogle Scholar
  180. Richter EA, Mikines KJ, Galbo H, Kiens B (1989) Effect of exercise on insulin action in human skeletal muscle. J Appl Physiol 66:876–885PubMedGoogle Scholar
  181. Richter EA, Derave W, Wojtaszewski JFP (2001) Glucose, exercise and insulin: emerging concepts. J Physiol 535:313–322. doi: 10.1111/j.1469-7793.2001.t01-2-00313.x PubMedPubMedCentralCrossRefGoogle Scholar
  182. Ropelle ER, Pauli JR, Prada PO et al (2006) Reversal of diet-induced insulin resistance with a single bout of exercise in the rat: the role of PTP1B and IRS-1 serine phosphorylation. J Physiol 577:997–1007. doi: 10.1113/jphysiol.2006.120006 PubMedPubMedCentralCrossRefGoogle Scholar
  183. Rose AJ, Richter EA (2005) Skeletal muscle glucose uptake during exercise: how is it regulated? Physiology (Bethesda) 20:260–270. doi: 10.1152/physiol.00012.2005 CrossRefGoogle Scholar
  184. Ross FA, Jensen TE, Hardie DG (2016) Differential regulation by AMP and ADP of AMPK complexes containing different γ subunit isoforms. Biochem J 473:189–199. doi: 10.1042/BJ20150910 PubMedPubMedCentralCrossRefGoogle Scholar
  185. Russell RR, Bergeron R, Shulman GI, Young LH (1999) Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am J Physiol 277:H643–H649PubMedGoogle Scholar
  186. Sabina RL, Kernstine KH, Boyd RL et al (1982) Metabolism of 5-amino-4-imidazolecarboxamide riboside in cardiac and skeletal muscle. Effects on purine nucleotide synthesis. J Biol Chem 257:10178–10183PubMedGoogle Scholar
  187. Sabina RL, Patterson D, Holmes EW (1985) 5-Amino-4-imidazolecarboxamide riboside (Z-riboside) metabolism in eukaryotic cells. J Biol Chem 260:6107–6114PubMedGoogle Scholar
  188. Sahlin K, Tonkonogi M, Söderlund K (1998) Energy supply and muscle fatigue in humans. Acta Physiol Scand 162:261–266. doi: 10.1046/j.1365-201X.1998.0298f.x PubMedCrossRefGoogle Scholar
  189. Sakamoto K, Göransson O, Hardie DG, Alessi DR (2004) Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR. Am J Physiol Endocrinol Metab 287:E310–E317. doi: 10.1152/ajpendo.00074.2004 PubMedCrossRefGoogle Scholar
  190. Sakamoto K, McCarthy A, Smith D et al (2005) Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J 24:1810–1820. doi: 10.1038/sj.emboj.7600667 PubMedPubMedCentralCrossRefGoogle Scholar
  191. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806. doi: 10.1038/414799a PubMedCrossRefGoogle Scholar
  192. Sanders MJ, Grondin PO, Hegarty BD et al (2007) Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem J 403:139–148. doi: 10.1042/BJ20061520 PubMedPubMedCentralCrossRefGoogle Scholar
  193. Schweitzer GG, Cartee GD (2011) Postexercise skeletal muscle glucose transport is normal in kininogen-deficient rats. Med Sci Sports Exerc 43:1148–1153. doi: 10.1249/MSS.0b013e31820a7f65 PubMedPubMedCentralCrossRefGoogle Scholar
  194. Schweitzer GG, Castorena CM, Hamada T et al (2011) The B2 receptor of bradykinin is not essential for the post-exercise increase in glucose uptake by insulin-stimulated mouse skeletal muscle. Physiol Res 60:511–519, doi: 932085 [pii]PubMedPubMedCentralGoogle Scholar
  195. Schweitzer GG, Arias EB, Cartee GD (2012) Sustained postexercise increases in AS160 Thr642 and Ser588 phosphorylation in skeletal muscle without sustained increases in kinase phosphorylation. J Appl Physiol 113:1852–1861. doi: 10.1152/japplphysiol.00619.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  196. Sharma N, Wang H, Arias EB et al (2015) Mechanisms for independent and combined effects of calorie restriction and acute exercise on insulin-stimulated glucose uptake by skeletal muscle of old rats. Am J Physiol Endocrinol Metab. doi: 10.1152/ajpendo.00618.2014 Google Scholar
  197. Sharoff CG, Hagobian TA, Malin SK et al (2010) Combining short-term metformin treatment and one bout of exercise does not increase insulin action in insulin-resistant individuals. Am J Physiol Endocrinol Metab 298:E815–E823. doi: 10.1152/ajpendo.00517.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  198. Shulman GI, Rothman DL, Jue T et al (1990) Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med 322:223–228. doi: 10.1056/NEJM199001253220403 PubMedCrossRefGoogle Scholar
  199. Smith JL, Patil PB, Fisher JS (2005) AICAR and hyperosmotic stress increase insulin-stimulated glucose transport. J Appl Physiol 99:877–883. doi: 10.1152/japplphysiol.01297.2004 PubMedCrossRefGoogle Scholar
  200. Sriwijitkamol A, Coletta DK, Wajcberg E et al (2007) Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: a time-course and dose-response study. Diabetes 56:836–848. doi: 10.2337/db06-1119 PubMedPubMedCentralCrossRefGoogle Scholar
  201. Steensberg A, van Hall G, Keller C et al (2002) Muscle glycogen content and glucose uptake during exercise in humans: influence of prior exercise and dietary manipulation. J Physiol 541:273–281. doi: 10.1113/jphysiol.2001.015594 PubMedPubMedCentralCrossRefGoogle Scholar
  202. Steinberg GR, Kemp BE (2009) AMPK in health and disease. Physiol Rev 89:1025–1078. doi: 10.1152/physrev.00011.2008 PubMedCrossRefGoogle Scholar
  203. Steinberg GR, O’Neill HM, Dzamko NL et al (2010) Whole body deletion of AMP-activated protein kinase β2 reduces muscle AMPK activity and exercise capacity. J Biol Chem 285:37198–37209. doi: 10.1074/jbc.M110.102434 PubMedPubMedCentralCrossRefGoogle Scholar
  204. Stephens TJ, Chen Z-P, Canny BJ et al (2002) Progressive increase in human skeletal muscle AMPKalpha2 activity and ACC phosphorylation during exercise. Am J Physiol Endocrinol Metab 282:E688–E694. doi: 10.1152/ajpendo.00101.2001 PubMedCrossRefGoogle Scholar
  205. Stöckli J, Meoli CC, Hoffman NJ et al (2015) The RabGAP TBC1D1 plays a central role in exercise-regulated glucose metabolism in skeletal muscle. Diabetes 64:1914–1922. doi: 10.2337/db13-1489 PubMedCrossRefGoogle Scholar
  206. Sullivan JE, Brocklehurst KJ, Marley AE et al (1994) Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett 353:33–36. doi: 10.1016/0014-5793(94)01006-4 PubMedCrossRefGoogle Scholar
  207. Suter M, Riek U, Tuerk R et al (2006) Dissecting the role of 5′-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. J Biol Chem 281:32207–32216. doi: 10.1074/jbc.M606357200 PubMedCrossRefGoogle Scholar
  208. Sylow L, Moller LL, Kleinert M et al (2015) Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1. J Physiol 593:645–656. doi: 10.1113/jphysiol.2014.284281 PubMedPubMedCentralCrossRefGoogle Scholar
  209. Szekeres F, Chadt A, Tom RZ et al (2012) The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism. AJP Endocrinol Metab 303:E524–E533. doi: 10.1152/ajpendo.00605.2011 CrossRefGoogle Scholar
  210. Tanaka S, Hayashi T, Toyoda T et al (2007) High-fat diet impairs the effects of a single bout of endurance exercise on glucose transport and insulin sensitivity in rat skeletal muscle. Metabolism 56:1719–1728. doi: 10.1016/j.metabol.2007.07.017 PubMedCrossRefGoogle Scholar
  211. Thong FSL, Derave W, Kiens B et al (2002) Caffeine-induced impairment of insulin action but not insulin signaling in human skeletal muscle is reduced by exercise. Diabetes 51:583–590. doi: 10.2337/diabetes.51.3.583 PubMedCrossRefGoogle Scholar
  212. Thong FSL, Derave W, Urso B et al (2003) Prior exercise increases basal and insulin-induced p38 mitogen-activated protein kinase phosphorylation in human skeletal muscle. J Appl Physiol 94:2337–2341. doi: 10.1152/japplphysiol.00036.2003 PubMedCrossRefGoogle Scholar
  213. Treebak JT, Birk JB, Rose AJ et al (2007) AS160 phosphorylation is associated with activation of alpha2beta2gamma1- but not alpha2beta2gamma3-AMPK trimeric complex in skeletal muscle during exercise in humans. Am J Physiol Endocrinol Metab 292:E715–E722. doi: 10.1152/ajpendo.00380.2006 PubMedCrossRefGoogle Scholar
  214. Treebak JT, Birk JB, Hansen BF et al (2009a) A-769662 activates AMPK beta1-containing complexes but induces glucose uptake through a PI3-kinase-dependent pathway in mouse skeletal muscle. Am J Physiol Cell Physiol 297:C1041–C1052. doi: 10.1152/ajpcell.00051.2009 PubMedCrossRefGoogle Scholar
  215. Treebak JT, Frøsig C, Pehmøller C et al (2009b) Potential role of TBC1D4 in enhanced post-exercise insulin action in human skeletal muscle. Diabetologia 52:891–900. doi: 10.1007/s00125-009-1294-y PubMedPubMedCentralCrossRefGoogle Scholar
  216. Treebak JT, Taylor EB, Witczak CA et al (2010) Identification of a novel phosphorylation site on TBC1D4 regulated by AMP-activated protein kinase in skeletal muscle. Am J Physiol Cell Physiol 298:C377–C385. doi: 10.1152/ajpcell.00297.2009 PubMedCrossRefGoogle Scholar
  217. Treebak JT, Pehmøller C, Kristensen JM et al (2014) Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle. J Physiol 592:351–375. doi: 10.1113/jphysiol.2013.266338 PubMedCrossRefGoogle Scholar
  218. Van den Berghe G, Gruber H (1993) International patent WO 93/03734Google Scholar
  219. Vavvas D, Apazidis A, Saha AK et al (1997) Contraction-induced changes in acetyl-CoA carboxylase and 5′-AMP-activated kinase in skeletal muscle. J Biol Chem 272:13255–13261. doi: 10.1074/jbc.272.20.13255 PubMedCrossRefGoogle Scholar
  220. Vendelbo MH, Møller AB, Treebak JT et al (2014) Sustained AS160 and TBC1D1 phosphorylations in human skeletal muscle 30 min after a single bout of exercise. J Appl Physiol 117:289–296. doi: 10.1152/japplphysiol.00044.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  221. Vichaiwong K, Purohit S, An D et al (2010) Contraction regulates site-specific phosphorylation of TBC1D1 in skeletal muscle. Biochem J 431:311–320. doi: 10.1042/BJ20101100 PubMedPubMedCentralCrossRefGoogle Scholar
  222. Vincent MA, Clerk LH, Lindner JR et al (2004) Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. Diabetes 53:1418–1423. doi: 10.2337/diabetes.53.6.1418 PubMedCrossRefGoogle Scholar
  223. Vind BF, Pehmøller C, Treebak JT et al (2011) Impaired insulin-induced site-specific phosphorylation of TBC1 domain family, member 4 (TBC1D4) in skeletal muscle of type 2 diabetes patients is restored by endurance exercise-training. Diabetologia 54:157–167. doi: 10.1007/s00125-010-1924-4 PubMedCrossRefGoogle Scholar
  224. Wallberg-Henriksson H, Constable SH, Young DA, Holloszy JO (1988) Glucose transport into rat skeletal muscle: interaction between exercise and insulin. J Appl Physiol 65:909–913PubMedGoogle Scholar
  225. Wang H, Sharma N, Arias EB, Cartee GD (2015) Insulin signaling and glucose uptake in the soleus muscle of 30-month-old rats after calorie restriction with or without acute exercise. J Gerontol A Biol Sci Med Sci 1–10. doi: 10.1093/gerona/glv142 Google Scholar
  226. Wasserman DH, Kang L, Ayala JE et al (2011) The physiological regulation of glucose flux into muscle in vivo. J Exp Biol 214:254–262. doi: 10.1242/jeb.048041 PubMedCrossRefGoogle Scholar
  227. Wilson C, Hargreaves M, Howlett KF (2006) Exercise does not alter subcellular localization, but increases phosphorylation of insulin-signaling proteins in human skeletal muscle. Am J Physiol Endocrinol Metab 290:E341–E346. doi: 10.1152/ajpendo.00314.2005 PubMedCrossRefGoogle Scholar
  228. Winder WW, Hardie DG (1996) Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol 270:E299–E304PubMedGoogle Scholar
  229. Witczak CA, Fujii N, Hirshman MF, Goodyear LJ (2007) Ca2+/calmodulin-dependent protein kinase kinase-alpha regulates skeletal muscle glucose uptake independent of AMP-activated protein kinase and Akt activation. Diabetes 56:1403–1409. doi: 10.2337/db06-1230 PubMedCrossRefGoogle Scholar
  230. Wojtaszewski JF, Hansen BF, Ursø B, Richter EA (1996) Wortmannin inhibits both insulin- and contraction-stimulated glucose uptake and transport in rat skeletal muscle. J Appl Physiol 81:1501–1509PubMedGoogle Scholar
  231. Wojtaszewski JFP, Hansen BF, Kiens B, Richter EA (1997) Insulin signaling in human skeletal muscle: time course and effect of exercise. Diabetes 46:1775–1781. doi: 10.2337/diab.46.11.1775 PubMedCrossRefGoogle Scholar
  232. Wojtaszewski JF, Higaki Y, Hirshman MF et al (1999) Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice. J Clin Invest 104:1257–1264. doi: 10.1172/JCI7961 PubMedPubMedCentralCrossRefGoogle Scholar
  233. Wojtaszewski JF, Hansen BF, Gade et al (2000a) Insulin signaling and insulin sensitivity after exercise in human skeletal muscle. Diabetes 49:325–331PubMedCrossRefGoogle Scholar
  234. Wojtaszewski JF, Nielsen P, Hansen BF et al (2000b) Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J Physiol 528(Pt 1):221–226PubMedPubMedCentralCrossRefGoogle Scholar
  235. Wojtaszewski JFP, Jørgensen SB, Hellsten Y et al (2002a) Glycogen-dependent effects of 5-aminoimidazole-4-carboxamide (AICA)-riboside on AMP-activated protein kinase and glycogen synthase activities in rat skeletal muscle. Diabetes 51:284–292. doi: 10.1186/1471-213X-4-9 PubMedCrossRefGoogle Scholar
  236. Wojtaszewski JFP, Mourtzakis M, Hillig T et al (2002b) Dissociation of AMPK activity and ACCbeta phosphorylation in human muscle during prolonged exercise. Biochem Biophys Res Commun 298:309–316PubMedCrossRefGoogle Scholar
  237. Wojtaszewski JFP, Jørgensen SB, Frøsig C et al (2003a) Insulin signalling: effects of prior exercise. Acta Physiol Scand 178:321–328. doi: 10.1046/j.1365-201X.2003.01151.x PubMedCrossRefGoogle Scholar
  238. Wojtaszewski JFP, MacDonald C, Nielsen JN et al (2003b) Regulation of 5′AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am J Physiol Endocrinol Metab 284:E813–E822. doi: 10.1152/ajpendo.00436.2002 PubMedCrossRefGoogle Scholar
  239. Wojtaszewski JFP, Birk JB, Frøsig C et al (2005) 5′AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes. J Physiol 564:563–573. doi: 10.1113/jphysiol.2005.082669 PubMedPubMedCentralCrossRefGoogle Scholar
  240. Woods A, Johnstone SR, Dickerson K et al (2003a) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13:2004–2008. doi: 10.1016/j.cub.2003.10.031 PubMedCrossRefGoogle Scholar
  241. Woods A, Vertommen D, Neumann D et al (2003b) Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstream AMPK kinases and study of their roles by site-directed mutagenesis. J Biol Chem 278:28434–28442. doi: 10.1074/jbc.M303946200 PubMedCrossRefGoogle Scholar
  242. Woods A, Dickerson K, Heath R et al (2005) Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2:21–33. doi: 10.1016/j.cmet.2005.06.005 PubMedCrossRefGoogle Scholar
  243. Wright DC, Geiger PC, Holloszy JO, Han D-H (2005) Contraction- and hypoxia-stimulated glucose transport is mediated by a Ca2 + -dependent mechanism in slow-twitch rat soleus muscle. Am J Physiol Endocrinol Metab 288:E1062–E1066. doi: 10.1152/ajpendo.00561.2004 PubMedCrossRefGoogle Scholar
  244. Xiao B, Sanders MJ, Underwood E et al (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472:230–233. doi: 10.1038/nature09932 PubMedPubMedCentralCrossRefGoogle Scholar
  245. Xiao Y, Sharma N, Arias EB et al (2013) A persistent increase in insulin-stimulated glucose uptake by both fast-twitch and slow-twitch skeletal muscles after a single exercise session by old rats. Age (Dordr) 35:573–582. doi: 10.1007/s11357-012-9383-0 CrossRefGoogle Scholar
  246. Xie M, Zhang D, Dyck JRB et al (2006) A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc Natl Acad Sci USA 103:17378–17383. doi: 10.1073/pnas.0604708103 PubMedPubMedCentralCrossRefGoogle Scholar
  247. Yamauchi T, Kamon J, Minokoshi Y et al (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295. doi: 10.1038/nm788 PubMedCrossRefGoogle Scholar
  248. Yang J, Holman GD (2005) Insulin and contraction stimulate exocytosis, but increased AMP-activated protein kinase activity resulting from oxidative metabolism stress slows endocytosis of GLUT4 in cardiomyocytes. J Biol Chem 280:4070–4078. doi: 10.1074/jbc.M410213200 PubMedCrossRefGoogle Scholar
  249. Yeh JI, Gulve EA, Rameh L, Birnbaum MJ (1995) The effects of wortmannin on rat skeletal muscle. Dissociation of signaling pathways for insulin- and contraction-activated hexose transport. J Biol Chem 270:2107–2111PubMedCrossRefGoogle Scholar
  250. Young JC, Garthwaite SM, Bryan JE et al (1983) Carbohydrate feeding speeds reversal of enhanced glucose uptake in muscle after exercise. Am J Physiol 245:R684–R688PubMedGoogle Scholar
  251. Young DA, Wallberg-Henriksson H, Sleeper MD, Holloszy JO (1987) Reversal of the exercise-induced increase in muscle permeability to glucose. Am J Physiol 253:E331–E335PubMedGoogle Scholar
  252. Zorzano A, Balon TW, Goodman MN, Ruderman NB (1986) Additive effects of prior exercise and insulin on glucose and AIB uptake by rat muscle. Am J Physiol 251:E21–E26PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rasmus Kjøbsted
    • 1
    • 2
  • Jørgen F. P. Wojtaszewski
    • 2
  • Jonas T. Treebak
    • 1
    Email author
  1. 1.Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
  2. 2.Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of ScienceUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations