Skip to main content

AMPK and Placental Progenitor Cells

  • Chapter
  • First Online:
AMP-activated Protein Kinase

Part of the book series: Experientia Supplementum ((EXS,volume 107))

Abstract

AMPK is important in numerous physiological systems but plays a vital role in embryonic and placental development. The placenta is a unique organ that is the essential lifeline between the mother and baby during pregnancy and gestation. During placental development, oxygen concentrations are very low until cells differentiate to establish the appropriate lineages that take on new functions required for placental and embryonic survival. Balancing the oxygen regulatory environment with the demands for energy and need to maintain metabolism during this process places AMPK at the center of maintaining placental cellular homeostasis as it integrates and responds to numerous complex stimuli. AMPK plays a critical role in sensing metabolic and energy changes. Once activated, it turns on pathways that produce energy and shuts down catabolic processes. AMPK coordinates cell growth, differentiation, and nutrient transport to maintain cell survival. Appropriate regulation of AMPK is essential for normal placental and embryonic development, and its dysregulation may lead to pregnancy-associated disorders such as intrauterine growth restriction, placental insufficiency, or preeclampsia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banek CT, Bauer AJ, Needham KM, Dreyer HC, Gilbert JS (2013) AICAR administration ameliorates hypertension and angiogenic imbalance in a model of preeclampsia in the rat. Am J Physiol Heart Circ Physiol 304:H1159–H1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bigham AW, Julian CG, Wilson MJ, Vargas E, Browne VA, Shriver MD, Moore LG (2014) Maternal PRKAA1 and EDNRA genotypes are associated with birth weight, and PRKAA1 with uterine artery diameter and metabolic homeostasis at high altitude. Physiol Genomics 46:687–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caniggia I, Winter J, Lye SJ, Post M (2000) Oxygen and placental development during the first trimester: implications for the pathophysiology of pre-eclampsia. Placenta 21(Suppl A):S25–S30

    Google Scholar 

  • Carey EAK, Albers RE, Doliboa SR, Hughes M, Wyatt CN, Natale DRC, Brown TL (2014) AMPK knockdown in placental trophoblast cells results in altered morphology and function. Stem Cells Dev 23:2921–2930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cetin I, Alvino G (2009) Intrauterine growth restriction: implications for placental metabolism and transport. A review. Placenta 30(Suppl A):S77–S82

    Article  PubMed  Google Scholar 

  • Chaddha V, Viero S, Huppertz B, Kingdom J (2004) Developmental biology of the placenta and the origins of placental insufficiency. Semin Fetal Neonatal Med 9:357–369

    Article  PubMed  Google Scholar 

  • Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–461

    Article  CAS  PubMed  Google Scholar 

  • Evans AM, Hardie DG, Galione A, Peers C, Kumar P, Wyatt CN (2006) AMP-activated protein kinase couples mitochondrial inhibition by hypoxia to cell-specific Ca2+ signalling mechanisms in oxygen-sensing cells. Novartis Found Symp 272:234–252

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG (2011) AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 25:1895–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansson T, Powell TL (2013) Role of placental nutrient sensing in developmental programming. Clin Obstet Gynecol 56:591–601

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaufman MR, Albers RE, Keoni C, Kulkarni-Datar K, Natale DR, Brown TL (2014) Important aspects of placental-specific gene transfer. Theriogenology 82:1043–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lager S, Powell TL (2012) Regulation of nutrient transport across the placenta. J Pregnancy 2012:179827

    Article  PubMed  PubMed Central  Google Scholar 

  • Louden ED, Luzzo KM, Jimenez PT, Chi T, Chi M, Moley KH (2014) TallyHO obese female mice experience poor reproductive outcomes and abnormal blastocyst metabolism that is reversed by metformin. Reprod Fertil Dev 27:31–39

    Article  PubMed  PubMed Central  Google Scholar 

  • Mansouri L, Xie Y, Rappolee DA (2012) Adaptive and pathogenic responses to stress by stem cells during development. Cells 1:1197–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mihaylova MM, Shaw RJ (2011) The AMPK signaling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13:1016–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natale DR, Starovic M, Cross JC (2006) Phenotypic analysis of the mouse placenta. Methods Mol Med 121:275–293

    PubMed  Google Scholar 

  • Okada Y, Ueshin Y, Isotani A, Saito-Fujita T, Nakashima H, Kimura K, Mizoguchi A, Oh-Hora M, Mori Y, Ogata M, Oshima RG, Okabe M, Ikawa M (2007) Complementation of placental defects and embryonic lethality by trophoblast-specific lentiviral gene transfer. Nat Biotechnol 25:233–237

    Article  CAS  PubMed  Google Scholar 

  • Rafalski VA, Mancini E, Brunet A (2012) Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate. J Cell Sci 125:5597–5608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Red-Horse K, Zhou Y, Genbacev O, Prakobphol A, Foulk R, McMaster M, Fisher SJ (2004) Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J Clin Invest 114:744–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selesniemi KL, Reedy MA, Gultice AD, Brown TL (2005a) Identification of committed placental stem cell lines for studies of differentiation. Stem Cells Dev 14:535–547

    Article  CAS  PubMed  Google Scholar 

  • Selesniemi K, Reedy M, Gultice A, Guilbert LJ, Brown TL (2005b) Transforming growth factor-beta induces differentiation of the labyrinthine trophoblast stem cell line SM10. Stem Cells Dev 14:697–711

    Article  CAS  PubMed  Google Scholar 

  • Selesniemi KL, Albers RE, Brown TL (2016) Id2 mediates differentiation of labyrinthine placental progenitor cell line, SM10. Stem Cells Dev. ePub

    Google Scholar 

  • Skeffington KL, Higgins JS, Mahmoud AD, Evans AM, Sferruzzi-Perri AN, Fowden AL, Yung HW, Burton GJ, Giussani DA, Moore LG (2016) Hypoxia, AMPK activation and uterine artery vasoreactivity. J Physiol 594:1357–1369

    Article  CAS  PubMed  Google Scholar 

  • Steinberg GR, Kemp BE (2009) AMPK in health and disease. Physiol Rev 89:1025–1078

    Article  CAS  PubMed  Google Scholar 

  • Tangeman L, Wyatt CN, Brown TL (2012) Knockdown of AMP-activated protein kinase alpha 1 and alpha 2 catalytic subunits. J RNAi Gene Silencing 8:470–478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toyama EQ, Herzig S, Courchet J, Lewis TL Jr, Losón OC, Hellberg K, Young NP, Chen H, Polleux F, Chan DC, Shaw RJ (2016) Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351:275–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez-Martin A, Vellon L, Quirós PM, Cufí S, Ruiz de Galarreta E, Oliveras-Ferraros C, Martin AG, Martin-Castillo B, López-Otín C, Menendez JA (2012) Activation of AMP-activated protein kinase (AMPK) provides a metabolic barrier to reprogramming somatic cells into stem cells. Cell Cycle 11:974–989

    Article  CAS  PubMed  Google Scholar 

  • Viollet B, Andreelli F, Jørgensen SB, Perrin C, Flamez D, Mu J, Wojtaszewski JF, Schuit FC, Birnbaum M, Richter E, Burcelin R, Vaulont S (2003) Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models. Biochem Soc Trans Part 1:216–219

    Article  Google Scholar 

  • Viollet B, Athea Y, Mounier R, Guigas B, Zarrinpashneh E, Horman S, Lantier L, Hebrard S, Devin-Leclerc J, Beauloye C, Foretz M, Andreelli F, Ventura-Clapier R, Bertrand L (2009) AMPK: lessons from transgenic and knockout animals. Front Biosci 14:19–44

    Article  CAS  Google Scholar 

  • Watson ED, Cross JC (2005) Development of structures and transport functions in the mouse placenta. Physiology (Bethesda) 20:180–193

    Article  CAS  Google Scholar 

  • Xie Y, Awonuga A, Liu J, Rings E, Puscheck EE, Rappolee DA (2013) Stress induces AMPK-dependent loss of potency factors Id2 and Cdx2 in early embryos and stem cells. Stem Cells Dev 22:1564–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young NP, Kamireddy A, Van Nostrand JL, Eichner LJ, Shokhirev MN, Dayn Y, Shaw RJ (2016) AMPK governs lineage specification through Tfeb-dependent regulation of lysosomes. Genes Dev 30:535–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong W, Xie Y, Abdallah M, Awonuga AO, Slater JA, Sipahi L, Puscheck EE, Rappolee DA (2010) Cellular stress causes reversible, PRKAA1/2-, and proteasome-dependent ID2 protein loss in trophoblast stem cells. Reproduction 140:921–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. David Natale (University of California San Diego) for critical reading of the manuscript and helpful input. This work was supported in part by a grant from the National Institutes of Health NICHD-R01 HD059969 (TLB) and The Wright State University Endowment for Research on Pregnancy Associated Disorders (www.wright.edu/give/pregnancyassociateddisorders) (TLB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L. Brown Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kaufman, M.R., Brown, T.L. (2016). AMPK and Placental Progenitor Cells. In: Cordero, M., Viollet, B. (eds) AMP-activated Protein Kinase. Experientia Supplementum, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-43589-3_4

Download citation

Publish with us

Policies and ethics