Genetically Encoded Fluorescent Biosensors to Explore AMPK Signaling and Energy Metabolism

  • Martin Pelosse
  • Cécile Cottet-Rousselle
  • Alexei Grichine
  • Imre Berger
  • Uwe SchlattnerEmail author
Part of the Experientia Supplementum book series (EXS, volume 107)


Maintenance of energy homeostasis is a basic requirement for cell survival. Different mechanisms have evolved to cope with spatial and temporal mismatch between energy-providing and -consuming processes. Among these, signaling by AMP-activated protein kinase (AMPK) is one of the key players, regulated by and itself regulating cellular adenylate levels. Further understanding its complex cellular function requires deeper insight into its activation patterns in space and time at a single cell level. This may become possible with an increasing number of genetically encoded fluorescent biosensors, mostly based on fluorescence resonance energy transfer, which have been engineered to monitor metabolic parameters and kinase activities. Here, we review basic principles of biosensor design and function and the advantages and limitations of their use and provide an overview on existing FRET biosensors to monitor AMPK activation, ATP concentration, and ATP/ADP ratios, together with other key metabolites and parameters of energy metabolism.


AMPK Activation Green Fluorescent Protein Fluorescence Recognition Element AMPK Signaling Cellular Energy State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by a grant from the Region Rhône Alpes, France (to U.S. and I.B.). Initial experiments of the authors on FRET sensors were supported among others by the EU 6th framework programs (contract LSHM-CT-2004-005272 EXGENESIS), Fondation ARC R2012 (CA 25/09/2014), and the Agence Nationale de Recherche (France, chaire d’excellence to U.S.).


  1. Abad MFC, Di Benedetto G, Magalhães PJ et al (2004) Mitochondrial pH monitored by a new engineered green fluorescent protein mutant. J Biol Chem 279:11521–11529. doi: 10.1074/jbc.M306766200 PubMedCrossRefGoogle Scholar
  2. Abdelfattah AS, Farhi SL, Zhao Y et al (2016) A bright and fast red fluorescent protein voltage indicator that reports neuronal activity in organotypic brain slices. J Neurosci 36:2458–2472. doi: 10.1523/JNEUROSCI.3484-15.2016 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alford SC, Wu J, Zhao Y et al (2013) Optogenetic reporters. Biol Cell 105:14–29. doi: 10.1111/boc.201200054 PubMedCrossRefGoogle Scholar
  4. Ando T, Imamura H, Suzuki R et al (2012) Visualization and measurement of ATP levels in living cells replicating hepatitis C virus genome RNA. PLoS Pathog 8, e1002561. doi: 10.1371/journal.ppat.1002561 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Atkinson DE (1968) The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7:4030–4034PubMedCrossRefGoogle Scholar
  6. Baird GS, Zacharias DA, Tsien RY (1999) Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci U S A 96:11241–11246PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baker KD, Thummel CS (2007) Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell Metab 6:257–266. doi: 10.1016/j.cmet.2007.09.002 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Banko MR, Allen JJ, Schaffer BE et al (2011) Chemical genetic screen for AMPKalpha2 substrates uncovers a network of proteins involved in mitosis. Mol Cell 44:878–892. doi: 10.1016/j.molcel.2011.11.005 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bastiaens PI, Jovin TM (1996) Microspectroscopic imaging tracks the intracellular processing of a signal transduction protein: fluorescent-labeled protein kinase C beta I. Proc Natl Acad Sci U S A 93:8407–8412PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bastiaens PIH, Squire A (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol 9:48–52. doi: 10.1016/S0962-8924(98)01410-X PubMedCrossRefGoogle Scholar
  11. Behjousiar A, Kontoravdi C, Polizzi KM (2012) In situ monitoring of intracellular glucose and glutamine in CHO cell culture. PloS One 7, e34512. doi: 10.1371/journal.pone.0034512 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Benčina M (2013) Illumination of the spatial order of intracellular pH by genetically encoded pH-sensitive sensors. Sensors 13:16736–16758. doi: 10.3390/s131216736 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Berg J, Hung YP, Yellen G (2009) A genetically encoded fluorescent reporter of ATP/ADP ratio. Nat Methods 6:161–166. doi: 10.1038/nmeth.1288 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bermejo C, Haerizadeh F, Takanaga H et al (2010) Dynamic analysis of cytosolic glucose and ATP levels in yeast using optical sensors. Biochem J 432:399–406. doi: 10.1042/BJ20100946 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bogner M, Ludewig U (2007) Visualization of arginine influx into plant cells using a specific FRET-sensor. J Fluoresc 17:350–360. doi: 10.1007/s10895-007-0192-2 PubMedCrossRefGoogle Scholar
  16. Bourdès A, Rudder S, East AK, Poole PS (2012) Mining the Sinorhizobium meliloti transportome to develop FRET biosensors for sugars, dicarboxylates and cyclic polyols. PloS One 7, e43578. doi: 10.1371/journal.pone.0043578 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Connolly NMC, D’Orsi B, Monsefi N et al (2016) Computational analysis of AMPK-mediated neuroprotection suggests acute excitotoxic bioenergetics and glucose dynamics are regulated by a minimal set of critical reactions. PloS One 11, e0148326. doi: 10.1371/journal.pone.0148326 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dalton CM, Szabadkai G, Carroll J (2014) Measurement of ATP in single oocytes: impact of maturation and cumulus cells on levels and consumption. J Cell Physiol 229:353–361. doi: 10.1002/jcp.24457 PubMedCrossRefGoogle Scholar
  19. Depry C, Mehta S, Li R, Zhang J (2015) Visualization of compartmentalized kinase activity dynamics using adaptable BimKARs. Chem Biol 22:1470–1479. doi: 10.1016/j.chembiol.2015.10.004 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Deuschle K, Chaudhuri B, Okumoto S et al (2006) Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of Arabidopsis RNA-silencing mutants. Plant Cell 18:2314–2325. doi: 10.1105/tpc.106.044073 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Erecińska M, Silver IA (1994) Ions and energy in mammalian brain. Prog Neurobiol 43:37–71PubMedCrossRefGoogle Scholar
  22. Ewald JC, Reich S, Baumann S et al (2011) Engineering genetically encoded nanosensors for real-time in vivo measurements of citrate concentrations. PloS One 6, e28245. doi: 10.1371/journal.pone.0028245 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Fehr M, Lalonde S, Lager I et al (2003) In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors. J Biol Chem 278:19127–19133. doi: 10.1074/jbc.M301333200 PubMedCrossRefGoogle Scholar
  24. Feniouk BA, Suzuki T, Yoshida M (2006) The role of subunit epsilon in the catalysis and regulation of FOF1-ATP synthase. Biochim Biophys Acta 1757:326–338. doi: 10.1016/j.bbabio.2006.03.022 PubMedCrossRefGoogle Scholar
  25. Forkink M, Manjeri GR, Liemburg-Apers DC et al (2014) Mitochondrial hyperpolarization during chronic complex I inhibition is sustained by low activity of complex II, III, IV and V. Biochim Biophys Acta 1837:1247–1256. doi: 10.1016/j.bbabio.2014.04.008 PubMedCrossRefGoogle Scholar
  26. González-Vera JA, Morris MC (2015) Fluorescent reporters and biosensors for probing the dynamic behavior of protein kinases. Proteomes 3:369–410. doi: 10.3390/proteomes3040369 CrossRefGoogle Scholar
  27. Griesbeck O, Baird GS, Campbell RE et al (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276:29188–29194. doi: 10.1074/jbc.M102815200 PubMedCrossRefGoogle Scholar
  28. Gruenwald K, Holland JT, Stromberg V et al (2012) Visualization of glutamine transporter activities in living cells using genetically encoded glutamine sensors. PloS One 7, e38591. doi: 10.1371/journal.pone.0038591 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hanson GT, Aggeler R, Oglesbee D et al (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279:13044–13053. doi: 10.1074/jbc.M312846200 PubMedCrossRefGoogle Scholar
  30. Hardie DG, Carling D, Gamblin SJ (2011) AMP-activated protein kinase: also regulated by ADP? Trends Biochem Sci 36:470–477. doi: 10.1016/j.tibs.2011.06.004 PubMedCrossRefGoogle Scholar
  31. Hardie DG, Hawley SA (2001) AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays 23:1112–1119. doi: 10.1002/bies.10009 PubMedCrossRefGoogle Scholar
  32. Hardie DG, Schaffer BE, Brunet A (2016) AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol 26:190–201. doi: 10.1016/j.tcb.2015.10.013 PubMedCrossRefGoogle Scholar
  33. Harrison JF, Haddad GG (2011) Effects of oxygen on growth and size: synthesis of molecular, organismal, and evolutionary studies with Drosophila melanogaster. Annu Rev Physiol 73:95–113. doi: 10.1146/annurev-physiol-012110-142155 PubMedCrossRefGoogle Scholar
  34. Hatsugai N, Perez Koldenkova V, Imamura H et al (2012) Changes in cytosolic ATP levels and intracellular morphology during bacteria-induced hypersensitive cell death as revealed by real-time fluorescence microscopy imaging. Plant Cell Physiol 53:1768–1775. doi: 10.1093/pcp/pcs119 PubMedCrossRefGoogle Scholar
  35. Hires SA, Zhu Y, Tsien RY (2008) Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proc Natl Acad Sci U S A 105:4411–4416. doi: 10.1073/pnas.0712008105 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hochbaum DR, Zhao Y, Farhi SL et al (2014) All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat Methods 11:825–833. doi: 10.1038/nmeth.3000 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hochreiter B, Garcia AP, Schmid JA (2015) Fluorescent proteins as genetically encoded FRET biosensors in life sciences. Sensors 15:26281–26314. doi: 10.3390/s151026281 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Huang S (2011) Systems biology of stem cells: three useful perspectives to help overcome the paradigm of linear pathways. Philos Trans R Soc B Biol Sci 366:2247–2259. doi: 10.1098/rstb.2011.0008 CrossRefGoogle Scholar
  39. Hung YP, Albeck JG, Tantama M, Yellen G (2011) Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor. Cell Metab 14:545–554. doi: 10.1016/j.cmet.2011.08.012 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Imamura H, Nhat KPH, Togawa H et al (2009) Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A 106:15651–15656. doi: 10.1073/pnas.0904764106 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Iworima DG, Pasqualotto BA, Rintoul GL (2016) Kif5 regulates mitochondrial movement, morphology, function and neuronal survival. Mol Cell Neurosci 72:22–33. doi: 10.1016/j.mcn.2015.12.014 PubMedCrossRefGoogle Scholar
  42. Jiang K, Schwarzer C, Lally E, Zhang S, Ruzin S, Machen T, Remington SJ, Feldman L (2006) Expression and characterization of a redox-sensing green fluorescent protein (reduction-oxidation-sensitive green fluorescent protein) in Arabidopsis. Plant Physiol 141:397–403PubMedPubMedCentralCrossRefGoogle Scholar
  43. Jin L, Han Z, Platisa J et al (2012) Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron 75:779–785. doi: 10.1016/j.neuron.2012.06.040 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kamioka Y, Sumiyama K, Mizuno R, Matsuda M (2013) Live imaging of transgenic mice expressing FRET biosensors. Conf IEEE Eng Med Biol Soc 2013:125–128. doi: 10.1109/EMBC.2013.6609453 Google Scholar
  45. Kaper T, Looger LL, Takanaga H et al (2007) Nanosensor detection of an immunoregulatory tryptophan influx/kynurenine efflux cycle. PLoS Biol 5, e257. doi: 10.1371/journal.pbio.0050257 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kedziora KM, Jalink K (2015) Fluorescence resonance energy transfer microscopy (FRET). Methods Mol Biol 1251:67–82. doi: 10.1007/978-1-4939-2080-8_5 PubMedCrossRefGoogle Scholar
  47. Kennedy HJ, Pouli AE, Ainscow EK et al (1999) Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. Potential role for strategically located mitochondria. J Biol Chem 274:13281–13291PubMedCrossRefGoogle Scholar
  48. Kioka H, Kato H, Fujikawa M et al (2014) Evaluation of intramitochondrial ATP levels identifies G0/G1 switch gene 2 as a positive regulator of oxidative phosphorylation. Proc Natl Acad Sci U S A 111:273–278. doi: 10.1073/pnas.1318547111 PubMedCrossRefGoogle Scholar
  49. Kishikawa J, Fujikawa M, Imamura H et al (2012) MRT letter: expression of ATP sensor protein in Caenorhabditis elegans. Microsc Res Tech 75:15–19. doi: 10.1002/jemt.21103 PubMedCrossRefGoogle Scholar
  50. Kneen M, Farinas J, Li Y, Verkman AS (1998) Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys J 74:1591–1599. doi: 10.1016/S0006-3495(98)77870-1 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Koretsky AP, Brosnan MJ, Chen LH et al (1990) NMR detection of creatine kinase expressed in liver of transgenic mice: determination of free ADP levels. Proc Natl Acad Sci U S A 87:3112–3116PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kotera I, Iwasaki T, Imamura H et al (2010) Reversible dimerization of Aequorea victoria fluorescent proteins increases the dynamic range of FRET-based indicators. ACS Chem Biol 5:215–222. doi: 10.1021/cb900263z PubMedCrossRefGoogle Scholar
  53. Kralj JM, Hochbaum DR, Douglass AD, Cohen AE (2011) Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science 333:345–348. doi: 10.1126/science.1204763 PubMedCrossRefGoogle Scholar
  54. Kunzelmann S, Webb MR (2009) A biosensor for fluorescent determination of ADP with high time resolution. J Biol Chem 284:33130–33138. doi: 10.1074/jbc.M109.047118 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kunzelmann S, Webb MR (2010) A fluorescent, reagentless biosensor for ADP based on tetramethylrhodamine-labeled ParM. ACS Chem Biol 5:415–425. doi: 10.1021/cb9003173 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kunzelmann S, Webb MR (2011) Fluorescence detection of GDP in real time with the reagentless biosensor rhodamine-ParM. Biochem J 440:43–49. doi: 10.1042/BJ20110349 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kuznetsov A, Bindokas VP, Marks JD, Philipson LH (2005) FRET-based voltage probes for confocal imaging: membrane potential oscillations throughout pancreatic islets. Am J Physiol Cell Physiol 289:C224–C229. doi: 10.1152/ajpcell.00004.2005 PubMedCrossRefGoogle Scholar
  58. Lakowicz JR, Szmacinski H, Nowaczyk K et al (1994) Fluorescence lifetime imaging of intracellular calcium in COS cells using Quin-2. Cell Calcium 15:7–27PubMedCrossRefGoogle Scholar
  59. Li J, Shuai HY, Gylfe E, Tengholm A (2013) Oscillations of sub-membrane ATP in glucose-stimulated beta cells depend on negative feedback from Ca(2+). Diabetologia 56:1577–1586. doi: 10.1007/s00125-013-2894-0 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lindenburg L, Merkx M (2014) Engineering genetically encoded FRET sensors. Sensors 14:11691–11713. doi: 10.3390/s140711691 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Liu X, Wu J, Liu H et al (2014) RoGFP1 is a quantitative biosensor in maize cells for cellular redox changes caused by environmental and endogenous stimuli. Biochem Biophys Res Commun 452:503–508. doi: 10.1016/j.bbrc.2014.08.107 PubMedCrossRefGoogle Scholar
  62. Llopis J, McCaffery JM, Miyawaki A et al (1998) Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci U S A 95:6803–6808PubMedPubMedCentralCrossRefGoogle Scholar
  63. Mank M, Reiff DF, Heim N et al (2006) A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. Biophys J 90:1790–1796. doi: 10.1529/biophysj.105.073536 PubMedCrossRefGoogle Scholar
  64. Mank M, Santos AF, Direnberger S et al (2008) A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Methods 5:805–811. doi: 10.1038/nmeth.1243 PubMedCrossRefGoogle Scholar
  65. Martin H, Burgess EJ, Smith WA et al (2015) JAK2 and AMP-kinase inhibition in vitro by food extracts, fractions and purified phytochemicals. Food Funct 6:305–312. doi: 10.1039/c4fo00626g PubMedGoogle Scholar
  66. Marvin JS, Borghuis BG, Tian L et al (2013) An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods 10:162–170. doi: 10.1038/nmeth.2333 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Mekler V, Kortkhonjia E, Mukhopadhyay J et al (2002) Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase-promoter open complex. Cell 108:599–614. doi: 10.1016/S0092-8674(02)00667-0 PubMedCrossRefGoogle Scholar
  68. Miesenböck G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195. doi: 10.1038/28190 PubMedCrossRefGoogle Scholar
  69. Miyamoto T, Rho E, Inoue T (2015a) Deconvoluting AMPK dynamics. Oncotarget 6:30431–30432. doi: 10.18632/oncotarget.5447 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Miyamoto T, Rho E, Sample V et al (2015b) Compartmentalized AMPK signaling illuminated by genetically encoded molecular sensors and actuators. Cell Rep. doi: 10.1016/j.celrep.2015.03.057 Google Scholar
  71. Miyawaki A, Griesbeck O, Heim R, Tsien RY (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci U S A 96:2135–2140. doi: 10.1073/pnas.96.5.2135 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Miyawaki A, Llopis J, Heim R et al (1997) Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin. Nature 388:882–887. doi: 10.1038/42264 PubMedCrossRefGoogle Scholar
  73. Mohsin M, Ahmad A, Iqbal M (2015) FRET-based genetically-encoded sensors for quantitative monitoring of metabolites. Biotechnol Lett 37:1919–1928. doi: 10.1007/s10529-015-1873-6 PubMedCrossRefGoogle Scholar
  74. Mörikofer-Zwez S, Walter P (1989) Binding of ADP to rat liver cytosolic proteins and its influence on the ratio of free ATP/free ADP. Biochem J 259:117–124PubMedPubMedCentralCrossRefGoogle Scholar
  75. Nagai T, Ibata K, Park ES et al (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90. doi: 10.1038/nbt0102-87 PubMedCrossRefGoogle Scholar
  76. Nagai T, Sawano A, Park ES, Miyawaki A (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci U S A 98:3197–3202. doi: 10.1073/pnas.051636098 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Nagai T, Yamada S, Tominaga T et al (2004) Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A 101:10554–10559. doi: 10.1073/pnas.0400417101 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Nakano M, Imamura H, Nagai T, Noji H (2011) Ca2+ regulation of mitochondrial ATP synthesis visualized at the single cell level. ACS Chem Biol 6:709–715. doi: 10.1021/cb100313n PubMedCrossRefGoogle Scholar
  79. Neumann D, Schlattner U, Wallimann T (2003) A molecular approach to the concerted action of kinases involved in energy homoeostasis. Biochem Soc Trans 31:169–174PubMedCrossRefGoogle Scholar
  80. Nilsson T, Schultz V, Berggren PO et al (1996) Temporal patterns of changes in ATP/ADP ratio, glucose 6-phosphate and cytoplasmic free Ca2+ in glucose-stimulated pancreatic beta-cells. Biochem J 314(Pt 1):91–94PubMedPubMedCentralCrossRefGoogle Scholar
  81. Okada S, Ota K, Ito T (2009) Circular permutation of ligand-binding module improves dynamic range of genetically encoded FRET-based nanosensor. Protein Sci 18:2518–2527. doi: 10.1002/pro.266 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Oldach L, Zhang J (2014) Genetically encoded fluorescent biosensors for live-cell visualization of protein phosphorylation. Chem Biol 21:186–197. doi: 10.1016/j.chembiol.2013.12.012 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Palmer AE, Jin C, Reed JC, Tsien RY (2004) Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci U S A 101:17404–17409. doi: 10.1073/pnas.0408030101 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Palmer AE, Qin Y, Park JG, McCombs JE (2011) Design and application of genetically encoded biosensors. Trends Biotechnol 29:144–152. doi: 10.1016/j.tibtech.2010.12.004 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Piljić A, de Diego I, Wilmanns M, Schultz C (2011) Rapid development of genetically encoded FRET reporters. ACS Chem Biol 6:685–691. doi: 10.1021/cb100402n PubMedCrossRefGoogle Scholar
  86. Poburko D, Santo-Domingo J, Demaurex N (2011) Dynamic regulation of the mitochondrial proton gradient during cytosolic calcium elevations. J Biol Chem 286:11672–11684. doi: 10.1074/jbc.M110.159962 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Rizzo MA, Springer GH, Granada B, Piston DW (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22:445–449. doi: 10.1038/nbt945 PubMedCrossRefGoogle Scholar
  88. Sample V, Ramamurthy S, Gorshkov K et al (2015) Polarized activities of AMPK and BRSK in primary hippocampal neurons. Mol Biol Cell 26:1935–1946. doi: 10.1091/mbc.E14-02-0764 PubMedPubMedCentralCrossRefGoogle Scholar
  89. San Martín A, Ceballo S, Baeza-Lehnert F et al (2014a) Imaging mitochondrial flux in single cells with a FRET sensor for pyruvate. PloS One 9, e85780. doi: 10.1371/journal.pone.0085780 PubMedPubMedCentralCrossRefGoogle Scholar
  90. San Martín A, Ceballo S, Ruminot I et al (2013) A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells. PloS One 8, e57712. doi: 10.1371/journal.pone.0057712 PubMedPubMedCentralCrossRefGoogle Scholar
  91. San Martín A, Sotelo-Hitschfeld T, Lerchundi R et al (2014b) Single-cell imaging tools for brain energy metabolism: a review. Neurophotonics 1:11004. doi: 10.1117/1.NPh.1.1.011004 CrossRefGoogle Scholar
  92. Sanders R, Draaijer A, Gerritsen HC et al (1995) Quantitative pH imaging in cells using confocal fluorescence lifetime imaging microscopy. Anal Biochem 227:302–308. doi: 10.1006/abio.1995.1285 PubMedCrossRefGoogle Scholar
  93. Shaner NC, Campbell RE, Steinbach PA et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572. doi: 10.1038/nbt1037 PubMedCrossRefGoogle Scholar
  94. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909. doi: 10.1038/nmeth819 PubMedCrossRefGoogle Scholar
  95. Siegel MS, Isacoff EY (1997) A genetically encoded optical probe of membrane voltage. Neuron 19:735–741PubMedCrossRefGoogle Scholar
  96. St-Pierre F, Marshall JD, Yang Y et al (2014) High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat Neurosci 17:884–889. doi: 10.1038/nn.3709 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Surin AM, Gorbacheva LR, Savinkova IG et al (2014) Study on ATP concentration changes in cytosol of individual cultured neurons during glutamate-induced deregulation of calcium homeostasis. Biochemistry 79:146–157. doi: 10.1134/S0006297914020084 PubMedGoogle Scholar
  98. Surin AM, Khiroug S, Gorbacheva LR et al (2012) Comparative analysis of cytosolic and mitochondrial ATP synthesis in embryonic and postnatal hippocampal neuronal cultures. Front Mol Neurosci 5:102. doi: 10.3389/fnmol.2012.00102 PubMedGoogle Scholar
  99. Suzuki R, Hotta K, Oka K (2015) Spatiotemporal quantification of subcellular ATP levels in a single HeLa cell during changes in morphology. Sci Rep 17:16874. doi: 10.1038/srep16874 CrossRefGoogle Scholar
  100. Takanaga H, Chaudhuri B, Frommer WB (2008) GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor. Biochim Biophys Acta 1778:1091–1099. doi: 10.1016/j.bbamem.2007.11.015 PubMedCrossRefGoogle Scholar
  101. Tantama M, Hung YP, Yellen G (2011) Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor. J Am Chem Soc 133:10034–10037. doi: 10.1021/ja202902d PubMedPubMedCentralCrossRefGoogle Scholar
  102. Tantama M, Martínez-François JR, Mongeon R, Yellen G (2013) Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio. Nat Commun 4:2550. doi: 10.1038/ncomms3550 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Tantama M, Yellen G (2014) Imaging changes in the cytosolic ATP-to-ADP ratio. Methods Enzymol 547:355–371. doi: 10.1016/B978-0-12-801415-8.00017-5 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Tarasov AI, Rutter GA (2014) Use of genetically encoded sensors to monitor cytosolic ATP/ADP ratio in living cells. Methods Enzymol 542:289–311. doi: 10.1016/B978-0-12-416618-9.00015-7 PubMedCrossRefGoogle Scholar
  105. Tarasov AI, Semplici F, Li D et al (2013) Frequency-dependent mitochondrial Ca(2+) accumulation regulates ATP synthesis in pancreatic β cells. Pflüg Arch 465:543–554. doi: 10.1007/s00424-012-1177-9 CrossRefGoogle Scholar
  106. Tarasov AI, Semplici F, Ravier MA et al (2012) The mitochondrial Ca2+ uniporter MCU is essential for glucose-induced ATP increases in pancreatic β-cells. PloS One 7, e39722. doi: 10.1371/journal.pone.0039722 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Teperino R, Amann S, Bayer M et al (2012) Hedgehog partial agonism drives Warburg-like metabolism in muscle and brown fat. Cell 151:414–426. doi: 10.1016/j.cell.2012.09.021 PubMedCrossRefGoogle Scholar
  108. Tian L, Hires SA, Mao T et al (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881. doi: 10.1038/nmeth.1398 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Toloe J, Mollajew R, Kügler S, Mironov SL (2014) Metabolic differences in hippocampal “Rett” neurons revealed by ATP imaging. Mol Cell Neurosci 59:47–56. doi: 10.1016/j.mcn.2013.12.008 PubMedCrossRefGoogle Scholar
  110. Tsou P, Zheng B, Hsu CH et al (2011) A fluorescent reporter of AMPK activity and cellular energy stress. Cell Metab 13:476–486. doi: 10.1016/j.cmet.2011.03.006 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Tsuyama T, Kishikawa J, Han Y-W et al (2013) In vivo fluorescent adenosine 5′-triphosphate (ATP) imaging of Drosophila melanogaster and Caenorhabditis elegans by using a genetically encoded fluorescent ATP biosensor optimized for low temperatures. Anal Chem 85:7889–7896. doi: 10.1021/ac4015325 PubMedCrossRefGoogle Scholar
  112. Valdebenito R, Ruminot I, Garrido-Gerter P et al (2015) Targeting of astrocytic glucose metabolism by beta-hydroxybutyrate. J Cereb Blood Flow Metab. doi: 10.1177/0271678X15613955 PubMedGoogle Scholar
  113. Veetil JV, Jin S, Ye K (2010) A glucose sensor protein for continuous glucose monitoring. Biosens Bioelectron 26:1650–1655. doi: 10.1016/j.bios.2010.08.052 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Vevea JD, Wolken DMA, Swayne TC et al (2013) Ratiometric biosensors that measure mitochondrial redox state and ATP in living yeast cells. J Vis Exp. doi: 10.3791/50633 PubMedPubMedCentralGoogle Scholar
  115. Vishnu N, Jadoon Khan M, Karsten F et al (2014) ATP increases within the lumen of the endoplasmic reticulum upon intracellular Ca2+ release. Mol Biol Cell 25:368–379. doi: 10.1091/mbc.E13-07-0433 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Wang D, Zhang Z, Chanda B, Jackson MB (2010) Improved probes for hybrid voltage sensor imaging. Biophys J 99:2355–2365. doi: 10.1016/j.bpj.2010.07.037 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Weikel KA, Ruderman NB, Cacicedo JM (2016) Unraveling the actions of AMP-activated protein kinase in metabolic diseases: systemic to molecular insights. Metabolism 65:634–645. doi: 10.1016/j.metabol.2016.01.005 PubMedCrossRefGoogle Scholar
  118. Wiederkehr A, Szanda G, Akhmedov D et al (2011) Mitochondrial matrix calcium is an activating signal for hormone secretion. Cell Metab 13:601–611. doi: 10.1016/j.cmet.2011.03.015 PubMedCrossRefGoogle Scholar
  119. Willemse M, Janssen E, de Lange F et al (2007) ATP and FRET--a cautionary note. Nat Biotechnol 25:170–172. doi: 10.1038/nbt0207-170 PubMedCrossRefGoogle Scholar
  120. Williamson DH, Lund P, Krebs HA (1967) The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J 103:514–527PubMedPubMedCentralCrossRefGoogle Scholar
  121. Xu Y, Wang Y, Xu Y et al (2015) Development of a novel phosphorylated AMPK protection assay for high-throughput screening using TR-FRET assay. J Biomol Screen 20:906–912. doi: 10.1177/1087057115585471 PubMedCrossRefGoogle Scholar
  122. Yaginuma H, Kawai S, Tabata KV et al (2014) Diversity in ATP concentrations in a single bacterial cell population revealed by quantitative single-cell imaging. Sci Rep 4:6522. doi: 10.1038/srep06522 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Yellen G, Mongeon R (2015) Quantitative two-photon imaging of fluorescent biosensors. Curr Opin Chem Biol 27:24–30. doi: 10.1016/j.cbpa.2015.05.024 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Zala D, Hinckelmann M-V, Yu H et al (2013) Vesicular glycolysis provides on-board energy for fast axonal transport. Cell 152:479–491. doi: 10.1016/j.cell.2012.12.029 PubMedCrossRefGoogle Scholar
  125. Zhang C, Ye B-C (2014) A single fluorescent protein-based sensor for in vivo 2-oxogluatarate detection in cell. Biosens Bioelectron 54:15–19. doi: 10.1016/j.bios.2013.10.038 PubMedCrossRefGoogle Scholar
  126. Zhao Y, Jin J, Hu Q et al (2011) Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metab 14:555–566. doi: 10.1016/j.cmet.2011.09.004 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Zou P, Zhao Y, Douglass AD et al (2014) Bright and fast multicoloured voltage reporters via electrochromic FRET. Nat Commun 5:4625. doi: 10.1038/ncomms5625 PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Martin Pelosse
    • 1
    • 2
  • Cécile Cottet-Rousselle
    • 1
    • 2
  • Alexei Grichine
    • 2
    • 3
  • Imre Berger
    • 4
  • Uwe Schlattner
    • 1
    • 2
    Email author
  1. 1.Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy)University Grenoble AlpesGrenobleFrance
  2. 2.Inserm, U1055 and U1209GrenobleFrance
  3. 3.Institute for Advanced BiosciencesUniversity Grenoble AlpesGrenobleFrance
  4. 4.University of BristolBristolUK

Personalised recommendations