Advertisement

The Role of AMPK in Drosophila melanogaster

  • Sarah E. SinnettEmail author
  • Jay E. Brenman
Chapter
Part of the Experientia Supplementum book series (EXS, volume 107)

Abstract

In the fruit fly, Drosophila melanogaster, mono-allelic expression of AMPK-α, -β, and -γ yields a single heterotrimeric energy sensor that regulates cellular and whole-body energetic homeostasis. The genetic simplicity of Drosophila, with only a single gene for each subunit, makes the fruit fly an appealing organism for elucidating the effects of AMPK mutations on signaling pathways and phenotypes. In addition, Drosophila presents researchers with an opportunity to use straightforward genetic approaches to elucidate metabolic signaling pathways that contain a level of complexity similar to that observed in mammalian pathways. Just as in mammals, however, the regulatory realm of AMPK function extends beyond metabolic rates and lipid metabolism. Indeed, experiments using Drosophila have shown that AMPK may exert protective effects with regard to life span and neurodegeneration. This chapter addresses a few of the research areas in which Drosophila has been used to elucidate the physiological functions of AMPK. In doing so, this chapter provides a primer for basic Drosophila nomenclature, thereby eliminating a communication barrier that persists for AMPK researchers trained in mammalian genetics.

Keywords

Drosophila melanogaster AMPK LKB1 Gal4 neurodegeneration 

Notes

Acknowledgments

We would like to thank Dr. Rob Onyenwoke and Dr. Nevzat Kazgan for critiquing this manuscript prior to submission. This work was funded by NS080108 to J.B.

References

  1. Amin N, Khan A, St Johnston D, Tomlinson I, Martin S, Brenman J, McNeill H (2009) LKB1 regulates polarity remodeling and adherens junction formation in the Drosophila eye. Proc Natl Acad Sci US A 106:8941–8946. doi: 10.1073/pnas.0812469106 CrossRefGoogle Scholar
  2. Andersen RO, Turnbull DW, Johnson EA, Doe CQ (2012) Sgt1 acts via an LKB1/AMPK pathway to establish cortical polarity in larval neuroblasts. Dev Biol 363:258–265. doi: 10.1016/j.ydbio.2011.12.047 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Apfeld J, O’Connor G, McDonagh T, DiStefano PS, Curtis R (2004) The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18:3004–3009. doi: 10.1101/gad.1255404 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bachmann A, Knust E (2008) The use of P-element transposons to generate transgenic flies. Methods Mol Biol 420:61–77. doi: 10.1007/978-1-59745-583-1_4 CrossRefPubMedGoogle Scholar
  5. Beall EL, Rio DC (1997) Drosophila P-element transposase is a novel site-specific endonuclease. Genes Dev 11:2137–2151CrossRefPubMedPubMedCentralGoogle Scholar
  6. Braco JT, Gillespie EL, Alberto GE, Brenman JE, Johnson EC (2012) Energy-dependent modulation of glucagon-like signaling in Drosophila via the AMP-activated protein kinase. Genetics 192:457–466. doi: 10.1534/genetics.112.143610 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415PubMedGoogle Scholar
  8. Burwinkel B et al (2005) Fatal congenital heart glycogenosis caused by a recurrent activating R531Q mutation in the gamma 2-subunit of AMP-activated protein kinase (PRKAG2), not by phosphorylase kinase deficiency. Am J Hum Genet 76:1034–1049. doi: 10.1086/430840 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cai Z, Yan LJ, Li K, Quazi SH, Zhao B (2012) Roles of AMP-activated protein kinase in Alzheimer’s disease. Neuromol Med 14:1–14. doi: 10.1007/s12017-012-8173-2 CrossRefGoogle Scholar
  10. Chen L et al (2012) AMP-activated protein kinase undergoes nucleotide-dependent conformational changes. Nat Struct Mol Biol 19:716–718. doi: 10.1038/nsmb.2319 CrossRefPubMedGoogle Scholar
  11. Choi S, Lim DS, Chung J (2015) Feeding and fasting signals converge on the LKB1-SIK3 pathway to regulate lipid metabolism in Drosophila. PLoS Genet 11, e1005263. doi: 10.1371/journal.pgen.1005263 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cole SL, Vassar R (2006) Isoprenoids and Alzheimer's disease: a complex relationship. Neurobiol Dis 22:209–222. doi: 10.1016/j.nbd.2005.11.007 CrossRefPubMedGoogle Scholar
  13. Cook M, Mani P, Wentzell JS, Kretzschmar D (2012) Increased RhoA prenylation in the loechrig (loe) mutant leads to progressive neurodegeneration. PLoS One 7, e44440. doi: 10.1371/journal.pone.0044440 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Duca FA, Cote CD, Rasmussen BA, Zadeh-Tahmasebi M, Rutter GA, Filippi BM, Lam TK (2015) Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat Med 21:506–511. doi: 10.1038/nm.3787 CrossRefPubMedGoogle Scholar
  15. Hardie DG, Alessi DR (2013) LKB1 and AMPK and the cancer-metabolism link—ten years after. BMC Biol 11:36. doi: 10.1186/1741-7007-11-36 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Iseli TJ et al (2005) AMP-activated protein kinase beta subunit tethers alpha and gamma subunits via its C-terminal sequence (186-270). J Biol Chem 280:13395–13400. doi: 10.1074/jbc.M412993200 CrossRefPubMedGoogle Scholar
  17. Johnson EC et al (2010) Altered metabolism and persistent starvation behaviors caused by reduced AMPK function in Drosophila. PLoS One 5. doi:10.1371/journal.pone.0012799Google Scholar
  18. Kazgan N, Williams T, Forsberg LJ, Brenman JE (2010) Identification of a nuclear export signal in the catalytic subunit of AMP-activated protein kinase. Mol Biol Cell 21:3433–3442. doi: 10.1091/mbc.E10-04-0347 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lee JH et al (2007) Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature 447:1017–1020. doi: 10.1038/nature05828 CrossRefPubMedGoogle Scholar
  20. Lessing D, Bonini NM (2009) Maintaining the brain: insight into human neurodegeneration from Drosophila melanogaster mutants. Nat Rev Genet 10:359–370. doi: 10.1038/nrg2563 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lin WS et al (2014) The anti-aging effects of Ludwigia octovalvis on Drosophila melanogaster and SAMP8 mice. Age (Dordr) 36:689–703. doi: 10.1007/s11357-013-9606-z CrossRefGoogle Scholar
  22. Linford NJ, Bilgir C, Ro J, Pletcher SD (2013) Measurement of lifespan in Drosophila melanogaster. J Vis Exp 71. doi: 10.3791/50068
  23. Liu Y et al (2013) Identification of a novel de novo mutation associated with PRKAG2 cardiac syndrome and early onset of heart failure. PLoS One 8, e64603. doi: 10.1371/journal.pone.0064603 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Majumdar S, Rio DC (2015) P transposable elements in Drosophila and other eukaryotic organisms. Microbiol Spectr 3:MDNA3-0004-2014. doi: 10.1128/microbiolspec.MDNA3-0004-2014
  25. Marchler-Bauer A et al (2015) CDD: NCBI's conserved domain database. Nucleic Acids Res 43:D222–D226. doi: 10.1093/nar/gku1221 Google Scholar
  26. Martin SG, St Johnston D (2003) A role for Drosophila LKB1 in anterior-posterior axis formation and epithelial polarity. Nature 421:379–384. doi: 10.1038/nature01296 CrossRefPubMedGoogle Scholar
  27. McGuire SE, Roman G, Davis RL (2004) Gene expression systems in Drosophila: a synthesis of time and space. Trends Genet 20:384–391. doi: 10.1016/j.tig.2004.06.012 CrossRefPubMedGoogle Scholar
  28. Moffat C, Harper ME (2010) Metabolic functions of AMPK: aspects of structure and of natural mutations in the regulatory gamma subunits. IUBMB Life 62:739–745. doi: 10.1002/iub.387 CrossRefPubMedGoogle Scholar
  29. Moisoi N, Fedele V, Edwards J, Martins LM (2014) Loss of PINK1 enhances neurodegeneration in a mouse model of Parkinson’s disease triggered by mitochondrial stress. Neuropharmacology 77:350–357. doi: 10.1016/j.neuropharm.2013.10.009 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Moser TS, Jones RG, Thompson CB, Coyne CB, Cherry S (2010a) A kinome RNAi screen identified AMPK as promoting poxvirus entry through the control of actin dynamics. PLoS Pathog 6, e1000954. doi: 10.1371/journal.ppat.1000954 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Moser TS, Sabin LR, Cherry S (2010b) RNAi screening for host factors involved in Vaccinia virus infection using Drosophila cells. J Vis Exp. doi: 10.3791/2137
  32. Nakada D, Saunders TL, Morrison SJ (2010) Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468:653–658. doi: 10.1038/nature09571 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ng CH et al (2012) AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson's disease. J Neurosci 32:14311–14317. doi: 10.1523/JNEUROSCI.0499-12.2012 CrossRefPubMedGoogle Scholar
  34. Onyenwoke RU, Forsberg LJ, Liu L, Williams T, Alzate O, Brenman JE (2012) AMPK directly inhibits NDPK through a phosphoserine switch to maintain cellular homeostasis. Mol Biol Cell 23:381–389. doi: 10.1091/mbc.E11-08-0699 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Osterwalder T, Yoon KS, White BH, Keshishian H (2001) A conditional tissue-specific transgene expression system using inducible GAL4. Proc Natl Acad Sci USA 98:12596–12601. doi: 10.1073/pnas.221303298 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Pan DA, Hardie DG (2002) A homologue of AMP-activated protein kinase in Drosophila melanogaster is sensitive to AMP and is activated by ATP depletion. Biochem J 367:179–186. doi: 10.1042/BJ20020703 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Perkins LA et al. (2015) The transgenic RNAi project at Harvard Medical School: Resources and Validation Genetics. doi: 10.1534/genetics.115.180208 Google Scholar
  38. Pimenta de Castro I et al (2012) Genetic analysis of mitochondrial protein misfolding in Drosophila melanogaster. Cell Death Differ 19:1308–1316. doi: 10.1038/cdd.2012.5 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Poirier L, Shane A, Zheng J, Seroude L (2008) Characterization of the Drosophila gene-switch system in aging studies: a cautionary tale. Aging Cell 7:758–770. doi: 10.1111/j.1474-9726.2008.00421.x CrossRefPubMedGoogle Scholar
  40. Reardon S (2014) Gut-brain link grabs neuroscientists. Nature 515:175–177. doi: 10.1038/515175a CrossRefPubMedGoogle Scholar
  41. Spasic MR, Callaerts P, Norga KK (2008) Drosophila alicorn is a neuronal maintenance factor protecting against activity-induced retinal degeneration. J Neurosci 28:6419–6429. doi: 10.1523/JNEUROSCI.1646-08.2008 CrossRefPubMedGoogle Scholar
  42. Tschape JA, Hammerschmied C, Muhlig-Versen M, Athenstaedt K, Daum G, Kretzschmar D (2002) The neurodegeneration mutant lochrig interferes with cholesterol homeostasis and Appl processing. EMBO J 21:6367–6376CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ulgherait M, Rana A, Rera M, Graniel J, Walker DW (2014) AMPK modulates tissue and organismal aging in a non-cell-autonomous manner. Cell Rep 8:1767–1780. doi: 10.1016/j.celrep.2014.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Vingtdeux V et al (2010) AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J Biol Chem 285:9100–9113. doi: 10.1074/jbc.M109.060061 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Vingtdeux V, Chandakkar P, Zhao H, d'Abramo C, Davies P, Marambaud P (2011) Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-beta peptide degradation. FASEB J 25:219–231. doi: 10.1096/fj.10-167361 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Williams T, Courchet J, Viollet B, Brenman JE, Polleux F (2011) AMP-activated protein kinase (AMPK) activity is not required for neuronal development but regulates axogenesis during metabolic stress. Proc Natl Acad Sci U S A 108:5849–5854. doi: 10.1073/pnas.1013660108 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Xiao B et al (2007) Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449:496–500. doi: 10.1038/nature06161 CrossRefPubMedGoogle Scholar
  48. Zhou Y et al (2003) Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Abeta42 by inhibiting Rho. Science 302:1215–1217. doi: 10.1126/science.1090154 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Gene Therapy Center, University of North Carolina (UNC) at Chapel HillChapel HillUSA
  2. 2.Department of Cell Biology and PhysiologyNeuroscience Center, UNC Chapel Hill School of MedicineChapel HillUSA

Personalised recommendations