Advertisement

Targeting AMPK: From Ancient Drugs to New Small-Molecule Activators

  • Bruno GuigasEmail author
  • Benoit Viollet
Chapter
Part of the Experientia Supplementum book series (EXS, volume 107)

Abstract

The AMP-activated protein kinase (AMPK) is an evolutionary conserved and ubiquitously expressed serine/threonine kinase mainly acting as a key regulator of cellular energy homeostasis. AMPK is a heterotrimeric protein complex, consisting of a catalytic α subunit and two regulatory β and γ subunits, whose activity is tightly regulated by changes in adenine nucleotides and several posttranslational modifications. Once activated in response to energy deficit, AMPK concomitantly inhibits ATP-consuming anabolic processes and promotes ATP-generating catabolic pathways via direct phosphorylation of multiple downstream effectors, leading to restoration of cellular energy balance. A growing number of energy/nutrient-independent functions of AMPK are also regularly reported, progressively expanding its role to regulation of non-metabolic cellular processes. Historically, AMPK as a therapeutic target has attracted much of interest due to its potential impact on metabolic disorders, such as obesity and type 2 diabetes, but has also recently received considerable renewed attention in the framework of cancer studies, highlighting the persistent need for selective, reversible, potent, and tissue-specific activators. In this chapter, we review the most recent advances in the understanding of the mechanism(s) of action of the current portfolio of AMPK activators, including plant-derived natural compounds and newly discovered small-molecule agonists directly targeting various AMPK subunits.

Keywords

AMPK Metformin Salicylate A-769662 Compound-13 991 

Notes

Duality of Interest

The authors declare that they have no conflict of interest.

References

  1. Anderson SN, Cool BL, Kifle L, Chiou W, Egan DA, Barrett LW, Richardson PL, Frevert EU, Warrior U, Kofron JL, Burns DJ (2004) Microarrayed compound screening (microARCS) to identify activators and inhibitors of AMP-activated protein kinase. J Biomol Screen 9:112–121PubMedCrossRefGoogle Scholar
  2. Andris F, Leo O (2015) AMPK in lymphocyte metabolism and function. Int Rev Immunol 34:67–81PubMedCrossRefGoogle Scholar
  3. Anil TM, Harish C, Lakshmi MN, Harsha K, Onkaramurthy M, Sathish Kumar V, Shree N, Geetha V, Balamurali GV, Gopala AS, Madhusudhan Reddy B, Govind MK, Anup MO, Moolemath Y, Venkataranganna MV, Jagannath MR, Somesh BP (2014) CNX-012-570, a direct AMPK activator provides strong glycemic and lipid control along with significant reduction in body weight; studies from both diet-induced obese mice and db/db mice models. Cardiovasc Diabetol 13:27PubMedPubMedCentralCrossRefGoogle Scholar
  4. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342PubMedPubMedCentralCrossRefGoogle Scholar
  5. Benziane B, Bjornholm M, Lantier L, Viollet B, Zierath JR, Chibalin AV (2009) AMP-activated protein kinase activator A-769662 is an inhibitor of the Na(+)-K(+)-ATPase. Am J Physiol Cell Physiol 297:C1554–C1566PubMedCrossRefGoogle Scholar
  6. Bieri M, Mobbs JI, Koay A, Louey G, Mok YF, Hatters DM, Park JT, Park KH, Neumann D, Stapleton D, Gooley PR (2012) AMP-activated protein kinase beta-subunit requires internal motion for optimal carbohydrate binding. Biophys J 102:305–314PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bijland S, Mancini SJ, Salt IP (2013) Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clin Sci (Lond) 124:491–507CrossRefGoogle Scholar
  8. Birk JB, Wojtaszewski JF (2006) Predominant alpha2/beta2/gamma3 AMPK activation during exercise in human skeletal muscle. J Physiol 577:1021–1032PubMedPubMedCentralCrossRefGoogle Scholar
  9. Breen DM, Sanli T, Giacca A, Tsiani E (2008) Stimulation of muscle cell glucose uptake by resveratrol through sirtuins and AMPK. Biochem Biophys Res Commun 374:117–122PubMedCrossRefGoogle Scholar
  10. Bullen JW, Balsbaugh JL, Chanda D, Shabanowitz J, Hunt DF, Neumann D, Hart GW (2014) Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK). J Biol Chem 289:10592–10606PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cai H, Scott E, Kholghi A, Andreadi C, Rufini A, Karmokar A, Britton RG, Horner-Glister E, Greaves P, Jawad D, James M, Howells L, Ognibene T, Malfatti M, Goldring C, Kitteringham N, Walsh J, Viskaduraki M, West K, Miller A, Hemingway D, Steward WP, Gescher AJ, Brown K (2015) Cancer chemoprevention: Evidence of a nonlinear dose response for the protective effects of resveratrol in humans and mice. Sci Transl Med 7:298ra117PubMedPubMedCentralCrossRefGoogle Scholar
  12. Calabrese MF, Rajamohan F, Harris MS, Caspers NL, Magyar R, Withka JM, Wang H, Borzilleri KA, Sahasrabudhe PV, Hoth LR, Geoghegan KF, Han S, Brown J, Subashi TA, Reyes AR, Frisbie RK, Ward J, Miller RA, Landro JA, Londregan AT, Carpino PA, Cabral S, Smith AC, Conn EL, Cameron KO, Qiu X, Kurumbail RG (2014) Structural basis for AMPK activation: natural and synthetic ligands regulate kinase activity from opposite poles by different molecular mechanisms. Structure 22:1161–1172PubMedCrossRefGoogle Scholar
  13. Cameron AR, Logie L, Patel K, Bacon S, Forteath C, Harthill J, Roberts A, Sutherland C, Stewart D, Viollet B, Sakamoto K, McDougall G, Foretz M, Rena G (2016) Investigation of salicylate hepatic responses in comparison with chemical analogues of the drug. Acta Biochim Biophys 1862(8):1412–1422CrossRefGoogle Scholar
  14. Cameron KO, Kung DW, Kalgutkar AS, Kurumbail RG, Miller R, Salatto CT, Ward J, Withka JM, Bhattacharya SK, Boehm M, Borzilleri KA, Brown JA, Calabrese M, Caspers NL, Cokorinos E, Conn EL, Dowling MS, Edmonds DJ, Eng H, Fernando DP, Frisbie R, Hepworth D, Landro J, Mao Y, Rajamohan F, Reyes AR, Rose CR, Ryder T, Shavnya A, Smith AC, Tu M, Wolford AC, Xiao J (2016) Discovery and preclinical characterization of 6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic Acid (PF-06409577), a direct activator of adenosine monophosphate-activated protein kinase (AMPK), for the potential treatment of diabetic nephropathy. J Med Chem (in press). doi: 10.1021/acs.jmedchem.6b00866 Google Scholar
  15. Carling D, Mayer FV, Sanders MJ, Gamblin SJ (2011) AMP-activated protein kinase: nature’s energy sensor. Nat Chem Biol 7:512–518PubMedCrossRefGoogle Scholar
  16. Carling D, Thornton C, Woods A, Sanders MJ (2012) AMP-activated protein kinase: new regulation, new roles? Biochem J 445:11–27PubMedCrossRefGoogle Scholar
  17. Chan AY, Dolinsky VW, Soltys CL, Viollet B, Baksh S, Light PE, Dyck JR (2008) Resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt. J Biol Chem 283:24194–24201PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen L, Xin FJ, Wang J, Hu J, Zhang YY, Wan S, Cao LS, Lu C, Li P, Yan SF, Neumann D, Schlattner U, Xia B, Wang ZX, Wu JW (2013) Conserved regulatory elements in AMPK. Nature 498:E8–E10PubMedCrossRefGoogle Scholar
  19. Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, Dickinson R, Adler A, Gagne G, Iyengar R, Zhao G, Marsh K, Kym P, Jung P, Camp HS, Frevert E (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3:403–416PubMedCrossRefGoogle Scholar
  20. Corton JM, Gillespie JG, Hawley SA, Hardie DG (1995) 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem 229:558–565PubMedCrossRefGoogle Scholar
  21. Dasgupta B, Chhipa RR (2016) Evolving lessons on the complex role of AMPK in normal physiology and cancer. Trends Pharmacol Sci 37:192–206PubMedCrossRefGoogle Scholar
  22. Dasgupta B, Milbrandt J (2007) Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci USA 104:7217–7222PubMedPubMedCentralCrossRefGoogle Scholar
  23. Daskalopoulos EP, Dufeys C, Bertrand L, Beauloye C, Horman S (2016) AMPK in cardiac fibrosis and repair: actions beyond metabolic regulation. J Mol Cell Cardiol 91:188–200PubMedCrossRefGoogle Scholar
  24. Ducommun S, Ford RJ, Bultot L, Deak M, Bertrand L, Kemp BE, Steinberg GR, Sakamoto K (2014) Enhanced activation of cellular AMPK by dual-small molecule treatment: AICAR and A769662. Am J Physiol Endocrinol Metab 306:E688–E696PubMedPubMedCentralCrossRefGoogle Scholar
  25. El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 275:223–228PubMedCrossRefGoogle Scholar
  26. Ford RJ, Fullerton MD, Pinkosky SL, Day EA, Scott JW, Oakhill JS, Bujak AL, Smith BK, Crane JD, Blumer RM, Marcinko K, Kemp BE, Gerstein HC, Steinberg GR (2015) Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity. Biochem J 468:125–132PubMedPubMedCentralCrossRefGoogle Scholar
  27. Foretz M, Hebrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G, Sakamoto K, Andreelli F, Viollet B (2010) Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 120:2355–2369PubMedPubMedCentralCrossRefGoogle Scholar
  28. Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B (2014) Metformin: from mechanisms of action to therapies. Cell Metab 20:953–966PubMedCrossRefGoogle Scholar
  29. Fullerton MD, Steinberg GR, Schertzer JD (2013) Immunometabolism of AMPK in insulin resistance and atherosclerosis. Mol Cell Endocrinol 366:224–234PubMedCrossRefGoogle Scholar
  30. Fullerton MD, Ford RJ, McGregor CP, LeBlond ND, Snider SA, Stypa SA, Day EA, Lhotak S, Schertzer JD, Austin RC, Kemp BE, Steinberg GR (2015) Salicylate improves macrophage cholesterol homeostasis via activation of Ampk. J Lipid Res 56:1025–1033PubMedPubMedCentralCrossRefGoogle Scholar
  31. Giordanetto F, Karis D (2012) Direct AMP-activated protein kinase activators: a review of evidence from the patent literature. Expert Opin Ther Pat 22:1467–1477PubMedCrossRefGoogle Scholar
  32. Gomez-Galeno JE, Dang Q, Nguyen TH, Boyer SH, Grote MP, Sun Z, Chen M, Craigo WA, van Poelje PD, MacKenna DA, Cable EE, Rolzin PA, Finn PD, Chi B, Linemeyer DL, Hecker SJ, Erion MD (2010) A potent and selective AMPK activator that inhibits de novo lipogenesis. ACS Med Chem Lett 1:478–482PubMedPubMedCentralCrossRefGoogle Scholar
  33. Goransson O, McBride A, Hawley SA, Ross FA, Shpiro N, Foretz M, Viollet B, Hardie DG, Sakamoto K (2007) Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase. J Biol Chem 282:32549–32560PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gowans GJ, Hawley SA, Ross FA, Hardie DG (2013) AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab 18:556–566PubMedPubMedCentralCrossRefGoogle Scholar
  35. Guigas B, Bertrand L, Taleux N, Foretz M, Wiernsperger N, Vertommen D, Andreelli F, Viollet B, Hue L (2006) 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an AMP-activated protein kinase-independent effect on glucokinase translocation. Diabetes 55:865–874PubMedCrossRefGoogle Scholar
  36. Guigas B, Taleux N, Foretz M, Detaille D, Andreelli F, Viollet B, Hue L (2007) AMP-activated protein kinase-independent inhibition of hepatic mitochondrial oxidative phosphorylation by AICA riboside. Biochem J 404:499–507PubMedPubMedCentralCrossRefGoogle Scholar
  37. Guigas B, Sakamoto K, Taleux N, Reyna SM, Musi N, Viollet B, Hue L (2009) Beyond AICA riboside: in search of new specific AMP-activated protein kinase activators. IUBMB Life 61:18–26PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hardie DG (2014a) AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu Rev Nutr 34:31–55PubMedCrossRefGoogle Scholar
  39. Hardie DG (2014b) AMPK—sensing energy while talking to other signaling pathways. Cell Metab 20:939–952PubMedCrossRefGoogle Scholar
  40. Hardie DG, Schaffer BE, Brunet A (2016) AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol 26:190–201PubMedCrossRefGoogle Scholar
  41. Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S, Towler MC, Brown LJ, Ogunbayo OA, Evans AM, Hardie DG (2010) Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab 11:554–565PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Chevtzoff C, Walker KJ, Peggie MW, Zibrova D, Green KA, Mustard KJ, Kemp BE, Sakamoto K, Steinberg GR, Hardie DG (2012) The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336:918–922PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hedner T, Everts B (1998) The early clinical history of salicylates in rheumatology and pain. Clin Rheumatol 17:17–25PubMedCrossRefGoogle Scholar
  44. Henin N, Vincent MF, Gruber HE, Van den Berghe G (1995) Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activated protein kinase. FASEB J 9:541–546PubMedGoogle Scholar
  45. Higgs GA, Salmon JA, Henderson B, Vane JR (1987) Pharmacokinetics of aspirin and salicylate in relation to inhibition of arachidonate cyclooxygenase and antiinflammatory activity. Proc Natl Acad Sci USA 84:1417–1420PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hinke SA, Martens GA, Cai Y, Finsi J, Heimberg H, Pipeleers D, Van de Casteele M (2007) Methyl succinate antagonises biguanide-induced AMPK-activation and death of pancreatic beta-cells through restoration of mitochondrial electron transfer. Br J Pharmacol 150:1031–1043PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hunter RW, Foretz M, Bultot L, Fullerton MD, Deak M, Ross FA, Hawley SA, Shpiro N, Viollet B, Barron D, Kemp BE, Steinberg GR, Hardie DG, Sakamoto K (2014) Mechanism of action of compound-13: an alpha1-selective small molecule activator of AMPK. Chem Biol 21:866–879PubMedPubMedCentralCrossRefGoogle Scholar
  48. Jenkins Y, Sun TQ, Markovtsov V, Foretz M, Li W, Nguyen H, Li Y, Pan A, Uy G, Gross L, Baltgalvis K, Yung SL, Gururaja T, Kinoshita T, Owyang A, Smith IJ, McCaughey K, White K, Godinez G, Alcantara R, Choy C, Ren H, Basile R, Sweeny DJ, Xu X, Issakani SD, Carroll DC, Goff DA, Shaw SJ, Singh R, Boros LG, Laplante MA, Marcotte B, Kohen R, Viollet B, Marette A, Payan DG, Kinsella TM, Hitoshi Y (2013) AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes. PLoS One 8:e81870PubMedPubMedCentralCrossRefGoogle Scholar
  49. Jensen TE, Ross FA, Kleinert M, Sylow L, Knudsen JR, Gowans GJ, Hardie DG, Richter EA (2015) PT-1 selectively activates AMPK-gamma1 complexes in mouse skeletal muscle, but activates all three gamma subunit complexes in cultured human cells by inhibiting the respiratory chain. Biochem J 467:461–472PubMedCrossRefGoogle Scholar
  50. Ju KD, Kim HJ, Tsogbadrakh B, Lee J, Ryu H, Cho EJ, Hwang YH, Kim K, Yang J, Ahn C, Oh KH (2016) HL156A, a novel AMP-activated protein kinase activator, is protective against peritoneal fibrosis in an in vivo and in vitro model of peritoneal fibrosis. Am J Physiol Renal Physiol 310:F342–F350PubMedCrossRefGoogle Scholar
  51. Kim AS, Miller EJ, Wright TM, Li J, Qi D, Atsina K, Zaha V, Sakamoto K, Young LH (2011) A small molecule AMPK activator protects the heart against ischemia-reperfusion injury. J Mol Cell Cardiol 51:24–32PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kim J, Shin J, Ha J (2015) Screening methods for AMP-activated protein kinase modulators: a patent review. Expert Opin Ther Pat 25:261–277PubMedCrossRefGoogle Scholar
  53. Koay A, Woodcroft B, Petrie EJ, Yue H, Emanuelle S, Bieri M, Bailey MF, Hargreaves M, Park JT, Park KH, Ralph S, Neumann D, Stapleton D, Gooley PR (2010) AMPK beta subunits display isoform specific affinities for carbohydrates. FEBS Lett 584:3499–3503PubMedCrossRefGoogle Scholar
  54. Kulkarni SS, Canto C (2015) The molecular targets of resveratrol. Biochim Biophys Acta 1852:1114–1123PubMedCrossRefGoogle Scholar
  55. Lai YC, Kviklyte S, Vertommen D, Lantier L, Foretz M, Viollet B, Hallen S, Rider MH (2014) A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators. Biochem J 460:363–375PubMedCrossRefGoogle Scholar
  56. Landgraf RR, Goswami D, Rajamohan F, Harris MS, Calabrese MF, Hoth LR, Magyar R, Pascal BD, Chalmers MJ, Busby SA, Kurumbail RG, Griffin PR (2013) Activation of AMP-activated protein kinase revealed by hydrogen/deuterium exchange mass spectrometry. Structure 21:1942–1953PubMedCrossRefGoogle Scholar
  57. Langendorf CG, Ngoei KR, Scott JW, Ling NX, Issa SM, Gorman MA, Parker MW, Sakamoto K, Oakhill JS, Kemp BE (2016) Structural basis of allosteric and synergistic activation of AMPK by furan-2-phosphonic derivative C2 binding. Nat Commun 7:10912PubMedPubMedCentralCrossRefGoogle Scholar
  58. Leverve XM, Guigas B, Detaille D, Batandier C, Koceir EA, Chauvin C, Fontaine E, Wiernsperger NF (2003) Mitochondrial metabolism and type-2 diabetes: a specific target of metformin. Diabetes Metab 29:6S88–6S94PubMedCrossRefGoogle Scholar
  59. Li YY, Yu LF, Zhang LN, Qiu BY, Su MB, Wu F, Chen DK, Pang T, Gu M, Zhang W, Ma WP, Jiang HW, Li JY, Nan FJ, Li J (2013) Novel small-molecule AMPK activator orally exerts beneficial effects on diabetic db/db mice. Toxicol Appl Pharmacol 273:325–334PubMedCrossRefGoogle Scholar
  60. Li X, Wang L, Zhou XE, Ke J, de Waal PW, Gu X, Tan MH, Wang D, Wu D, Xu HE, Melcher K (2015) Structural basis of AMPK regulation by adenine nucleotides and glycogen. Cell Res 25:50–66PubMedCrossRefGoogle Scholar
  61. Liang J, Xu ZX, Ding Z, Lu Y, Yu Q, Werle KD, Zhou G, Park YY, Peng G, Gambello MJ, Mills GB (2015) Myristoylation confers noncanonical AMPK functions in autophagy selectivity and mitochondrial surveillance. Nat Commun 6:7926PubMedCrossRefGoogle Scholar
  62. Lim EG, Kim GT, Lee SH, Kim SY, Kim YM (2016) Apoptotic effects of extract from Cnidium monnieri (L.) Cusson by adenosine monosphosphate-activated protein kinase-independent pathway in HCT116 colon cancer cells. Mol Med Rep 13:4681–4688PubMedGoogle Scholar
  63. Lin YY, Kiihl S, Suhail Y, Liu SY, Chou YH, Kuang Z, Lu JY, Khor CN, Lin CL, Bader JS, Irizarry R, Boeke JD (2012) Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK. Nature 482:251–255PubMedPubMedCentralCrossRefGoogle Scholar
  64. Liu X, Chhipa RR, Pooya S, Wortman M, Yachyshin S, Chow LM, Kumar A, Zhou X, Sun Y, Quinn B, McPherson C, Warnick RE, Kendler A, Giri S, Poels J, Norga K, Viollet B, Grabowski GA, Dasgupta B (2014) Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK. Proc Natl Acad Sci USA 111:E435–E444PubMedPubMedCentralCrossRefGoogle Scholar
  65. Liu Y, Park JM, Oh SJ, Chang KH, Lee MY (2015) Antiplatelet effect of a newly developed AMP-activated protein kinase activator YLF-466D. Eur J Pharmacol 760:81–87PubMedCrossRefGoogle Scholar
  66. Marcinko K, Steinberg GR (2014) The role of AMPK in controlling metabolism and mitochondrial biogenesis during exercise. Exp Physiol 99:1581–1585PubMedCrossRefGoogle Scholar
  67. Marcinko K, Bujak AL, Lally JS, Ford RJ, Wong TH, Smith BK, Kemp BE, Jenkins Y, Li W, Kinsella TM, Hitoshi Y, Steinberg GR (2015) The AMPK activator R419 improves exercise capacity and skeletal muscle insulin sensitivity in obese mice. Mol Metab 4:643–651PubMedPubMedCentralCrossRefGoogle Scholar
  68. Miglianico M, Nicolaes GA, Neumann D (2016) Pharmacological targeting of AMP-activated protein kinase and opportunities for computer-aided drug design. J Med Chem 59:2879–2893PubMedCrossRefGoogle Scholar
  69. Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ (2013) Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494:256–260PubMedPubMedCentralCrossRefGoogle Scholar
  70. Morales DR, Morris AD (2015) Metformin in cancer treatment and prevention. Annu Rev Med 66:17–29PubMedCrossRefGoogle Scholar
  71. Moreno D, Knecht E, Viollet B, Sanz P (2008) A769662, a novel activator of AMP-activated protein kinase, inhibits non-proteolytic components of the 26S proteasome by an AMPK-independent mechanism. FEBS Lett 582:2650–2654PubMedCrossRefGoogle Scholar
  72. Mounier R, Theret M, Lantier L, Foretz M, Viollet B (2015) Expanding roles for AMPK in skeletal muscle plasticity. Trends Endocrinol Metab 26:275–286PubMedCrossRefGoogle Scholar
  73. O’Brien AJ, Villani LA, Broadfield LA, Houde VP, Galic S, Blandino G, Kemp BE, Tsakiridis T, Muti P, Steinberg GR (2015) Salicylate activates AMPK and synergizes with metformin to reduce the survival of prostate and lung cancer cells ex vivo through inhibition of de novo lipogenesis. Biochem J 469:177–187PubMedCrossRefGoogle Scholar
  74. O’Neill LA, Hardie DG (2013) Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493:346–355PubMedCrossRefGoogle Scholar
  75. Oakhill JS, Chen ZP, Scott JW, Steel R, Castelli LA, Ling N, Macaulay SL, Kemp BE (2010) Beta-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). Proc Natl Acad Sci USA 107:19237–19241PubMedPubMedCentralCrossRefGoogle Scholar
  76. Oakhill JS, Steel R, Chen ZP, Scott JW, Ling N, Tam S, Kemp BE (2011) AMPK is a direct adenylate charge-regulated protein kinase. Science 332:1433–1435PubMedCrossRefGoogle Scholar
  77. Oakhill JS, Scott JW, Kemp BE (2012) AMPK functions as an adenylate charge-regulated protein kinase. Trends Endocrinol Metab 23:125–132PubMedCrossRefGoogle Scholar
  78. Oligschlaeger Y, Miglianico M, Chanda D, Scholz R, Thali RF, Tuerk R, Stapleton DI, Gooley PR, Neumann D (2015) The recruitment of AMP-activated protein kinase to glycogen is regulated by autophosphorylation. J Biol Chem 290:11715–11728PubMedPubMedCentralCrossRefGoogle Scholar
  79. Owen MR, Doran E, Halestrap AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348(Pt 3):607–614PubMedPubMedCentralCrossRefGoogle Scholar
  80. Pang T, Zhang ZS, Gu M, Qiu BY, Yu LF, Cao PR, Shao W, Su MB, Li JY, Nan FJ, Li J (2008) Small molecule antagonizes autoinhibition and activates AMP-activated protein kinase in cells. J Biol Chem 283:16051–16060PubMedPubMedCentralCrossRefGoogle Scholar
  81. Park CE, Kim MJ, Lee JH, Min BI, Bae H, Choe W, Kim SS, Ha J (2007) Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase. Exp Mol Med 39:222–229PubMedCrossRefGoogle Scholar
  82. Polekhina G, Gupta A, van Denderen BJ, Feil SC, Kemp BE, Stapleton D, Parker MW (2005) Structural basis for glycogen recognition by AMP-activated protein kinase. Structure 13:1453–1462PubMedCrossRefGoogle Scholar
  83. Qi D, Young LH (2015) AMPK: energy sensor and survival mechanism in the ischemic heart. Trends Endocrinol Metab 26:422–429PubMedPubMedCentralCrossRefGoogle Scholar
  84. Rajamohan F, Reyes AR, Frisbie RK, Hoth LR, Sahasrabudhe P, Magyar R, Landro JA, Withka JM, Caspers NL, Calabrese MF, Ward J, Kurumbail RG (2016) Probing the enzyme kinetics, allosteric modulation and activation of alpha1- and alpha2-subunit-containing AMP-activated protein kinase (AMPK) heterotrimeric complexes by pharmacological and physiological activators. Biochem J 473:581–592PubMedPubMedCentralCrossRefGoogle Scholar
  85. Rana S, Blowers EC, Natarajan A (2015) Small molecule adenosine 5′-monophosphate activated protein kinase (AMPK) modulators and human diseases. J Med Chem 58:2–29PubMedCrossRefGoogle Scholar
  86. Rao E, Zhang Y, Li Q, Hao J, Egilmez NK, Suttles J, Li B (2016) AMPK-dependent and independent effects of AICAR and compound C on T-cell responses. Oncotarget, (in press). doi: 10.18632/oncotarget.9277
  87. Ross FA, Jensen TE, Hardie DG (2016) Differential regulation by AMP and ADP of AMPK complexes containing different gamma subunit isoforms. Biochem J 473:189–199PubMedPubMedCentralCrossRefGoogle Scholar
  88. Rubio T, Vernia S, Sanz P (2013) Sumoylation of AMPKbeta2 subunit enhances AMP-activated protein kinase activity. Mol Biol Cell 24(1801–11):S1–S4Google Scholar
  89. Ruderman NB, Carling D, Prentki M, Cacicedo JM (2013) AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest 123:2764–2772PubMedPubMedCentralCrossRefGoogle Scholar
  90. Salminen A, Kaarniranta K, Haapasalo A, Soininen H, Hiltunen M (2011) AMP-activated protein kinase: a potential player in Alzheimer’s disease. J Neurochem 118:460–474PubMedCrossRefGoogle Scholar
  91. Sanders MJ, Ali ZS, Hegarty BD, Heath R, Snowden MA, Carling D (2007a) Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family. J Biol Chem 282:32539–32548PubMedCrossRefGoogle Scholar
  92. Sanders MJ, Grondin PO, Hegarty BD, Snowden MA, Carling D (2007b) Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem J 403:139–148PubMedPubMedCentralCrossRefGoogle Scholar
  93. Scott JW, van Denderen BJ, Jorgensen SB, Honeyman JE, Steinberg GR, Oakhill JS, Iseli TJ, Koay A, Gooley PR, Stapleton D, Kemp BE (2008) Thienopyridone drugs are selective activators of AMP-activated protein kinase beta1-containing complexes. Chem Biol 15:1220–1230PubMedCrossRefGoogle Scholar
  94. Scott JW, Ling N, Issa SM, Dite TA, O’Brien MT, Chen ZP, Galic S, Langendorf CG, Steinberg GR, Kemp BE, Oakhill JS (2014) Small molecule drug A-769662 and AMP synergistically activate naive AMPK independent of upstream kinase signaling. Chem Biol 21:619–627PubMedCrossRefGoogle Scholar
  95. Scott JW, Galic S, Graham KL, Foitzik R, Ling NX, Dite TA, Issa SM, Langendorf CG, Weng QP, Thomas HE, Kay TW, Birnberg NC, Steinberg GR, Kemp BE, Oakhill JS (2015) Inhibition of AMP-activated protein kinase at the allosteric drug-binding site promotes islet insulin release. Chem Biol 22:705–711PubMedCrossRefGoogle Scholar
  96. Sinnett SE, Brenman JE (2014) Past strategies and future directions for identifying AMP-activated protein kinase (AMPK) modulators. Pharmacol Ther 143:111–118PubMedPubMedCentralCrossRefGoogle Scholar
  97. Steinberg GR, Kemp BE (2009) AMPK in health and disease. Physiol Rev 89:1025–1078PubMedCrossRefGoogle Scholar
  98. Stephenne X, Foretz M, Taleux N, van der Zon GC, Sokal E, Hue L, Viollet B, Guigas B (2011) Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia 54:3101–3110PubMedPubMedCentralCrossRefGoogle Scholar
  99. Sullivan JE, Carey F, Carling D, Beri RK (1994) Characterisation of 5′-AMP-activated protein kinase in human liver using specific peptide substrates and the effects of 5′-AMP analogues on enzyme activity. Biochem Biophys Res Commun 200:1551–1556PubMedCrossRefGoogle Scholar
  100. Timmermans AD, Balteau M, Gelinas R, Renguet E, Ginion A, de Meester C, Sakamoto K, Balligand JL, Bontemps F, Vanoverschelde JL, Horman S, Beauloye C, Bertrand L (2014) A-769662 potentiates the effect of other AMP-activated protein kinase activators on cardiac glucose uptake. Am J Physiol Heart Circ Physiol 306:H1619–H1630PubMedCrossRefGoogle Scholar
  101. Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T, Goossens GH, Hoeks J, van der Krieken S, Ryu D, Kersten S, Moonen-Kornips E, Hesselink MK, Kunz I, Schrauwen-Hinderling VB, Blaak EE, Auwerx J, Schrauwen P (2011) Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 14:612–622PubMedCrossRefGoogle Scholar
  102. Treebak JT, Birk JB, Hansen BF, Olsen GS, Wojtaszewski JF (2009) A-769662 activates AMPK beta1-containing complexes but induces glucose uptake through a PI3-kinase-dependent pathway in mouse skeletal muscle. Am J Physiol Cell Physiol 297:C1041–C1052PubMedCrossRefGoogle Scholar
  103. Turner N, Li JY, Gosby A, To SW, Cheng Z, Miyoshi H, Taketo MM, Cooney GJ, Kraegen EW, James DE, Hu LH, Li J, Ye JM (2008) Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action. Diabetes 57:1414–1418PubMedCrossRefGoogle Scholar
  104. Um JH, Park SJ, Kang H, Yang S, Foretz M, McBurney MW, Kim MK, Viollet B, Chung JH (2010) AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 59:554–563PubMedCrossRefGoogle Scholar
  105. van Dam AD, Nahon KJ, Kooijman S, van den Berg SM, Kanhai AA, Kikuchi T, Heemskerk MM, van Harmelen V, Lombes M, van den Hoek AM, de Winther MP, Lutgens E, Guigas B, Rensen PC, Boon MR (2015) Salsalate activates brown adipose tissue in mice. Diabetes 64:1544–1554PubMedCrossRefGoogle Scholar
  106. Vincent EE, Coelho PP, Blagih J, Griss T, Viollet B, Jones RG (2015) Differential effects of AMPK agonists on cell growth and metabolism. Oncogene 34:3627–3639PubMedCrossRefGoogle Scholar
  107. Vingtdeux V, Giliberto L, Zhao H, Chandakkar P, Wu Q, Simon JE, Janle EM, Lobo J, Ferruzzi MG, Davies P, Marambaud P (2010) AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J Biol Chem 285:9100–9113PubMedPubMedCentralCrossRefGoogle Scholar
  108. Vingtdeux V, Chandakkar P, Zhao H, d’Abramo C, Davies P, Marambaud P (2011) Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-beta peptide degradation. FASEB J 25:219–231PubMedPubMedCentralCrossRefGoogle Scholar
  109. Viollet B, Foretz M, Guigas B, Horman S, Dentin R, Bertrand L, Hue L, Andreelli F (2006) Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J Physiol 574:41–53PubMedPubMedCentralCrossRefGoogle Scholar
  110. Viollet B, Foretz M, Schlattner U (2014) Bypassing AMPK phosphorylation. Chem Biol 21:567–569PubMedCrossRefGoogle Scholar
  111. Wang S, Song P, Zou MH (2012) AMP-activated protein kinase, stress responses and cardiovascular diseases. Clin Sci (Lond) 122:555–573CrossRefGoogle Scholar
  112. Wang S, Liang X, Yang Q, Fu X, Rogers CJ, Zhu M, Rodgers BD, Jiang Q, Dodson MV, Du M (2015) Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) alpha1. Int J Obes (Lond) 39:967–976CrossRefGoogle Scholar
  113. Warden SM, Richardson C, O’Donnell J Jr, Stapleton D, Kemp BE, Witters LA (2001) Post-translational modifications of the beta-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization. Biochem J 354:275–283PubMedPubMedCentralCrossRefGoogle Scholar
  114. Witters LA (2001) The blooming of the French lilac. J Clin Invest 108:1105–1107PubMedPubMedCentralCrossRefGoogle Scholar
  115. Wu J, Puppala D, Feng X, Monetti M, Lapworth AL, Geoghegan KF (2013) Chemoproteomic analysis of intertissue and interspecies isoform diversity of AMP-activated protein kinase (AMPK). J Biol Chem 288:35904–35912PubMedPubMedCentralCrossRefGoogle Scholar
  116. Xiao B, Heath R, Saiu P, Leiper FC, Leone P, Jing C, Walker PA, Haire L, Eccleston JF, Davis CT, Martin SR, Carling D, Gamblin SJ (2007) Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449:496–500PubMedCrossRefGoogle Scholar
  117. Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D, Jing C, Walker PA, Eccleston JF, Haire LF, Saiu P, Howell SA, Aasland R, Martin SR, Carling D, Gamblin SJ (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472:230–233PubMedPubMedCentralCrossRefGoogle Scholar
  118. Xiao B, Sanders MJ, Carmena D, Bright NJ, Haire LF, Underwood E, Patel BR, Heath RB, Walker PA, Hallen S, Giordanetto F, Martin SR, Carling D, Gamblin SJ (2013) Structural basis of AMPK regulation by small molecule activators. Nat Commun 4:3017PubMedPubMedCentralGoogle Scholar
  119. Xu Q, Hao X, Yang Q, Si L (2009) Resveratrol prevents hyperglycemia-induced endothelial dysfunction via activation of adenosine monophosphate-activated protein kinase. Biochem Biophys Res Commun 388:389–394PubMedCrossRefGoogle Scholar
  120. Yan Y, Ollila S, Wong IP, Vallenius T, Palvimo JJ, Vaahtomeri K, Makela TP (2015) SUMOylation of AMPKalpha1 by PIAS4 specifically regulates mTORC1 signalling. Nat Commun 6:8979PubMedPubMedCentralCrossRefGoogle Scholar
  121. Yavari A, Stocker CJ, Ghaffari S, Wargent ET, Steeples V, Czibik G, Pinter K, Bellahcene M, Woods A, Martinez de Morentin PB, Cansell C, Lam BY, Chuster A, Petkevicius K, Nguyen-Tu MS, Martinez-Sanchez A, Pullen TJ, Oliver PL, Stockenhuber A, Nguyen C, Lazdam M, O’Dowd JF, Harikumar P, Toth M, Beall C, Kyriakou T, Parnis J, Sarma D, Katritsis G, Wortmann DD, Harper AR, Brown LA, Willows R, Gandra S, Poncio V, de Oliveira Figueiredo MJ, Qi NR, Peirson SN, McCrimmon RJ, Gereben B, Tretter L, Fekete C, Redwood C, Yeo GS, Heisler LK, Rutter GA, Smith MA, Withers DJ, Carling D, Sternick EB, Arch JR, Cawthorne MA, Watkins H, Ashrafian H (2016) Chronic activation of gamma2 AMPK induces obesity and reduces beta cell function. Cell Metab 23:821–836PubMedPubMedCentralCrossRefGoogle Scholar
  122. Yun H, Ha J (2011) AMP-activated protein kinase modulators: a patent review (2006–2010). Expert Opin Ther Pat 21:983–1005PubMedCrossRefGoogle Scholar
  123. Zadra G, Photopoulos C, Tyekucheva S, Heidari P, Weng QP, Fedele G, Liu H, Scaglia N, Priolo C, Sicinska E, Mahmood U, Signoretti S, Birnberg N, Loda M (2014) A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis. EMBO Mol Med 6:519–538PubMedPubMedCentralCrossRefGoogle Scholar
  124. Zheng J, Ramirez VD (2000) Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. Br J Pharmacol 130:1115–1123PubMedPubMedCentralCrossRefGoogle Scholar
  125. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174PubMedPubMedCentralCrossRefGoogle Scholar
  126. Zou MH, Kirkpatrick SS, Davis BJ, Nelson JS, Wiles WG 4th, Schlattner U, Neumann D, Brownlee M, Freeman MB, Goldman MH (2004) Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J Biol Chem 279: 43940–43951Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Molecular Cell BiologyLeiden University Medical CenterLeidenThe Netherlands
  2. 2.Department of ParasitologyLeiden University Medical CenterLeidenThe Netherlands
  3. 3.INSERM, U1016, Institut CochinParisFrance
  4. 4.CNRS, UMR8104ParisFrance
  5. 5.Université Paris DescartesSorbonne Paris CitéFrance

Personalised recommendations