Advertisement

AMPK in Pathogens

  • Inês Mesquita
  • Diana Moreira
  • Belém Sampaio-Marques
  • Mireille Laforge
  • Anabela Cordeiro-da-Silva
  • Paula Ludovico
  • Jérôme Estaquier
  • Ricardo SilvestreEmail author
Chapter
Part of the Experientia Supplementum book series (EXS, volume 107)

Abstract

During host–pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recognized to play an important role in microbial growth and persistence. Extensive studies have documented the role of AMP-activated protein kinase (AMPK) signaling, a central cellular hub involved in the regulation of energy homeostasis, in host–pathogen interactions. Here, we highlight the most recent advances detailing how pathogens hijack cellular metabolism by suppressing or increasing the activity of the host energy sensor AMPK. We also address the role of lower eukaryote AMPK orthologues in the adaptive process to the host microenvironment and their contribution for pathogen survival, differentiation, and growth. Finally, we review the effects of pharmacological or genetic AMPK modulation on pathogen growth and persistence.

Keywords

SNF1/AMPK Host-pathogen interactions Infection Metabolism Microbial auxotrophy Bioenergetics 

Notes

Funding Statement

This work was supported by grants to JE from the Agence Nationale de Recherches sur le Sida et les Hépatites Virales (ANRS) and from The Canadian HIV Cure Enterprise Team Grant HIG-13305 from the Canadian Institutes of Health Research (CIHR) in partnership with CANFAR and IAS. JE acknowledges the support of the Canada Research Chair program. It was also supported by FCT—Fundação para a Ciência e a Tecnologia/MEC—Ministério da Educação e Ciência através de fundos nacionais e quando aplicável cofinanciado pelo FEDER, no âmbito do Acordo de Parceria PT2020 referente à unidade de investigação n° 4293. DM is supported by SFRH/BD/91543/2012. RS is supported by the Fundação para a Ciência e Tecnologia (FCT) (IF/00021/2014).

References

  1. Abu Kwaik Y, Bumann D (2013) Microbial quest for food in vivo: ‘nutritional virulence’ as an emerging paradigm. Cell Microbiol 15(6):882–890. doi: 10.1111/cmi.12138 PubMedCrossRefGoogle Scholar
  2. Acosta-Serrano A, Vassella E, Liniger M, Kunz Renggli C, Brun R, Roditi I, Englund PT (2001) The surface coat of procyclic Trypanosoma brucei: programmed expression and proteolytic cleavage of procyclin in the tsetse fly. Proc Natl Acad Sci U S A 98(4):1513–1518. doi: 10.1073/pnas.041611698 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Adam RD (2000) The Giardia lamblia genome. Int J Parasitol 30(4):475–484PubMedCrossRefGoogle Scholar
  4. Al-Olayan EM, Williams GT, Hurd H (2002) Apoptosis in the malaria protozoan, Plasmodium berghei: a possible mechanism for limiting intensity of infection in the mosquito. Int J Parasitol 32(9):1133–1143PubMedCrossRefGoogle Scholar
  5. Ameisen JC, Idziorek T, Billaut-Mulot O, Loyens M, Tissier JP, Potentier A, Ouaissi A (1995) Apoptosis in a unicellular eukaryote (Trypanosoma cruzi): implications for the evolutionary origin and role of programmed cell death in the control of cell proliferation, differentiation and survival. Cell Death Differ 2(4):285–300PubMedGoogle Scholar
  6. Appelberg R (2006) Macrophage nutriprive antimicrobial mechanisms. J Leukoc Biol 79(6):1117–1128. doi: 10.1189/jlb.0206079 PubMedCrossRefGoogle Scholar
  7. Artz JD, Wernimont AK, Allali-Hassani A, Zhao Y, Amani M, Lin YH, Senisterra G, Wasney GA, Fedorov O, King O, Roos A, Lunin VV, Qiu W, Finerty P Jr, Hutchinson A, Chau I, von Delft F, MacKenzie F, Lew J, Kozieradzki I, Vedadi M, Schapira M, Zhang C, Shokat K, Heightman T, Hui R (2011) The Cryptosporidium parvum kinome. BMC Genomics 12:478. doi: 10.1186/1471-2164-12-478 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ashrafi K, Lin SS, Manchester JK, Gordon JI (2000) Sip2p and its partner snf1p kinase affect aging in S. cerevisiae. Genes Dev 14(15):1872–1885PubMedPubMedCentralGoogle Scholar
  9. Barnes K, Ingram JC, Porras OH, Barros LF, Hudson ER, Fryer LG, Foufelle F, Carling D, Hardie DG, Baldwin SA (2002) Activation of GLUT1 by metabolic and osmotic stress: potential involvement of AMP-activated protein kinase (AMPK). J Cell Sci 115(Pt 11):2433–2442PubMedGoogle Scholar
  10. Barquilla A, Crespo JL, Navarro M (2008) Rapamycin inhibits trypanosome cell growth by preventing TOR complex 2 formation. Proc Natl Acad Sci U S A 105(38):14579–14584. doi: 10.1073/pnas.0802668105 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Barquilla A, Saldivia M, Diaz R, Bart JM, Vidal I, Calvo E, Hall MN, Navarro M (2012) Third target of rapamycin complex negatively regulates development of quiescence in Trypanosoma brucei. Proc Natl Acad Sci U S A 109(36):14399–14404. doi: 10.1073/pnas.1210465109 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bermejo C, Rodriguez E, Garcia R, Rodriguez-Pena JM, Rodriguez de la Concepcion ML, Rivas C, Arias P, Nombela C, Posas F, Arroyo J (2008) The sequential activation of the yeast HOG and SLT2 pathways is required for cell survival to cell wall stress. Mol Biol Cell 19(3):1113–1124. doi: 10.1091/mbc.E07-08-0742 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Blagih J, Krawczyk CM, Jones RG (2012) LKB1 and AMPK: central regulators of lymphocyte metabolism and function. Immunol Rev 249(1):59–71. doi: 10.1111/j.1600-065X.2012.01157.x PubMedCrossRefGoogle Scholar
  14. Blagih J, Coulombe F, Vincent EE, Dupuy F, Galicia-Vazquez G, Yurchenko E, Raissi TC, van der Windt GJ, Viollet B, Pearce EL, Pelletier J, Piccirillo CA, Krawczyk CM, Divangahi M, Jones RG (2015) The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42(1):41–54. doi: 10.1016/j.immuni.2014.12.030 PubMedCrossRefGoogle Scholar
  15. Bonen A, Han XX, Habets DD, Febbraio M, Glatz JF, Luiken JJ (2007) A null mutation in skeletal muscle FAT/CD36 reveals its essential role in insulin- and AICAR-stimulated fatty acid metabolism. Am J Physiol Endocrinol Metab 292(6):E1740–E1749. doi: 10.1152/ajpendo.00579.2006 PubMedCrossRefGoogle Scholar
  16. Bracchi V, Langsley G, Thelu J, Eling W, Ambroise-Thomas P (1996) PfKIN, an SNF1 type protein kinase of Plasmodium falciparum predominantly expressed in gametocytes. Mol Biochem Parasitol 76(1–2):299–303PubMedCrossRefGoogle Scholar
  17. Brenchley JM, Paiardini M, Knox KS, Asher AI, Cervasi B, Asher TE, Scheinberg P, Price DA, Hage CA, Kholi LM, Khoruts A, Frank I, Else J, Schacker T, Silvestri G, Douek DC (2008) Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood 112(7):2826–2835. doi: 10.1182/blood-2008-05-159301 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Brunton J, Steele S, Ziehr B, Moorman N, Kawula T (2013) Feeding uninvited guests: mTOR and AMPK set the table for intracellular pathogens. PLoS Pathog 9(10):e1003552. doi: 10.1371/journal.ppat.1003552 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Buchanan KL, Murphy JW (1998) What makes Cryptococcus neoformans a pathogen? Emerg Infect Dis 4(1):71–83. doi: 10.3201/eid0401.980109 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bumann D (2015) Heterogeneous host-pathogen encounters: act locally, think globally. Cell Host Microbe 17(1):13–19. doi: 10.1016/j.chom.2014.12.006 PubMedCrossRefGoogle Scholar
  21. Burke JD, Platanias LC, Fish EN (2014) Beta interferon regulation of glucose metabolism is PI3K/Akt dependent and important for antiviral activity against coxsackievirus B3. J Virol 88(6):3485–3495. doi: 10.1128/JVI.02649-13 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Campillo-Gimenez L, Cumont MC, Fay M, Kared H, Monceaux V, Diop O, Muller-Trutwin M, Hurtrel B, Levy Y, Zaunders J, Dy M, Leite-de-Moraes MC, Elbim C, Estaquier J (2010) AIDS progression is associated with the emergence of IL-17-producing cells early after simian immunodeficiency virus infection. J Immunol 184(2):984–992. doi: 10.4049/jimmunol.0902316 PubMedCrossRefGoogle Scholar
  23. Caradonna KL, Engel JC, Jacobi D, Lee CH, Burleigh BA (2013) Host metabolism regulates intracellular growth of Trypanosoma cruzi. Cell Host Microbe 13(1):108–117. doi: 10.1016/j.chom.2012.11.011 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Carlson M (1999) Glucose repression in yeast. Curr Opin Microbiol 2(2):202–207. doi: 10.1016/S1369-5274(99)80035-6 PubMedCrossRefGoogle Scholar
  25. Cecchinato V, Trindade CJ, Laurence A, Heraud JM, Brenchley JM, Ferrari MG, Zaffiri L, Tryniszewska E, Tsai WP, Vaccari M, Parks RW, Venzon D, Douek DC, O’Shea JJ, Franchini G (2008) Altered balance between Th17 and Th1 cells at mucosal sites predicts AIDS progression in simian immunodeficiency virus-infected macaques. Mucosal Immunol 1(4):279–288. doi: 10.1038/mi.2008.14 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Celenza JL, Carlson M (1986) A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233(4769):1175–1180PubMedCrossRefGoogle Scholar
  27. Celenza JL, Carlson M (1989) Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein. Mol Cell Biol 9(11):5034–5044PubMedPubMedCentralCrossRefGoogle Scholar
  28. Celenza JL, Eng FJ, Carlson M (1989) Molecular analysis of the SNF4 gene of Saccharomyces cerevisiae: evidence for physical association of the SNF4 protein with the SNF1 protein kinase. Mol Cell Biol 9(11):5045–5054PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cemma M, Brumell JH (2012) Interactions of pathogenic bacteria with autophagy systems. Curr Biol 22(13):R540–R545. doi: 10.1016/j.cub.2012.06.001 PubMedCrossRefGoogle Scholar
  30. Chakrabarti S, Liehl P, Buchon N, Lemaitre B (2012) Infection-induced host translational blockage inhibits immune responses and epithelial renewal in the Drosophila gut. Cell Host Microbe 12(1):60–70. doi: 10.1016/j.chom.2012.06.001 PubMedCrossRefGoogle Scholar
  31. Chantranupong L, Wolfson RL, Sabatini DM (2015) Nutrient-sensing mechanisms across evolution. Cell 161(1):67–83. doi: 10.1016/j.cell.2015.02.041 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Clemmens CS, Morris MT, Lyda TA, Acosta-Serrano A, Morris JC (2009) Trypanosoma brucei AMP-activated kinase subunit homologs influence surface molecule expression. Exp Parasitol 123(3):250–257. doi: 10.1016/j.exppara.2009.07.010 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Crawford A, Wilson D (2015) Essential metals at the host-pathogen interface: nutritional immunity and micronutrient assimilation by human fungal pathogens. FEMS Yeast Res 15(7):pii: fov071. doi: 10.1093/femsyr/fov071 CrossRefGoogle Scholar
  34. Cumont MC, Monceaux V, Viollet L, Lay S, Parker R, Hurtrel B, Estaquier J (2007) TGF-beta in intestinal lymphoid organs contributes to the death of armed effector CD8 T cells and is associated with the absence of virus containment in rhesus macaques infected with the simian immunodeficiency virus. Cell Death Differ 14(10):1747–1758. doi: 10.1038/sj.cdd.4402192 PubMedCrossRefGoogle Scholar
  35. Daniel J, Deb C, Dubey VS, Sirakova TD, Abomoelak B, Morbidoni HR, Kolattukudy PE (2004) Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186(15):5017–5030. doi: 10.1128/JB.186.15.5017-5030.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Daniel J, Maamar H, Deb C, Sirakova TD, Kolattukudy PE (2011) Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog 7(6):e1002093. doi: 10.1371/journal.ppat.1002093 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13(10):722–737. doi: 10.1038/nri3532 PubMedCrossRefGoogle Scholar
  38. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331(6016):456–461. doi: 10.1126/science.1196371 PubMedCrossRefGoogle Scholar
  39. Escobar DA, Botero-Quintero AM, Kautza BC, Luciano J, Loughran P, Darwiche S, Rosengart MR, Zuckerbraun BS, Gomez H (2015) Adenosine monophosphate-activated protein kinase activation protects against sepsis-induced organ injury and inflammation. J Surg Res 194(1):262–272. doi: 10.1016/j.jss.2014.10.009 PubMedCrossRefGoogle Scholar
  40. Estaquier J, Idziorek T, de Bels F, Barre-Sinoussi F, Hurtrel B, Aubertin AM, Venet A, Mehtali M, Muchmore E, Michel P, Mouton Y, Girard M, Ameisen JC (1994) Programmed cell death and AIDS: significance of T-cell apoptosis in pathogenic and nonpathogenic primate lentiviral infections. Proc Natl Acad Sci U S A 91(20):9431–9435PubMedPubMedCentralCrossRefGoogle Scholar
  41. Estaquier J, Idziorek T, Zou W, Emilie D, Farber CM, Bourez JM, Ameisen JC (1995) T helper type 1/T helper type 2 cytokines and T cell death: preventive effect of interleukin 12 on activation-induced and CD95 (FAS/APO-1)-mediated apoptosis of CD4+ T cells from human immunodeficiency virus-infected persons. J Exp Med 182(6):1759–1767PubMedCrossRefGoogle Scholar
  42. Estaquier J, Tanaka M, Suda T, Nagata S, Golstein P, Ameisen JC (1996) Fas-mediated apoptosis of CD4+ and CD8+ T cells from human immunodeficiency virus-infected persons: differential in vitro preventive effect of cytokines and protease antagonists. Blood 87(12):4959–4966PubMedGoogle Scholar
  43. Estruch F, Treitel MA, Yang X, Carlson M (1992) N-terminal mutations modulate yeast SNF1 protein kinase function. Genetics 132(3):639–650PubMedPubMedCentralGoogle Scholar
  44. Ferretti AC, Larocca MC, Favre C (2012) Nutritional stress in eukaryotic cells: oxidative species and regulation of survival in time of scarceness. Mol Genet Metab 105(2):186–192. doi: 10.1016/j.ymgme.2011.11.007 PubMedCrossRefGoogle Scholar
  45. Flint HJ, Scott KP, Louis P, Duncan SH (2012) The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9(10):577–589. doi: 10.1038/nrgastro.2012.156 PubMedCrossRefGoogle Scholar
  46. Forbes JR, Gros P (2001) Divalent-metal transport by NRAMP proteins at the interface of host-pathogen interactions. Trends Microbiol 9(8):397–403PubMedCrossRefGoogle Scholar
  47. Francione L, Smith PK, Accari SL, Taylor PE, Bokko PB, Bozzaro S, Beech PL, Fisher PR (2009) Legionella pneumophila multiplication is enhanced by chronic AMPK signalling in mitochondrially diseased Dictyostelium cells. Dis Model Mech 2(9–10):479–489. doi: 10.1242/dmm.003319 PubMedCrossRefGoogle Scholar
  48. Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA, Sartorelli V (2008) Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell 14(5):661–673. doi: 10.1016/j.devcel.2008.02.004 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62(2):334–361PubMedPubMedCentralGoogle Scholar
  50. Ghosh D, Walton JL, Roepe PD, Sinai AP (2012) Autophagy is a cell death mechanism in Toxoplasma gondii. Cell Microbiol 14(4):589–607. doi: 10.1111/j.1462-5822.2011.01745.x PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gjini E, Haydon DT, Barry JD, Cobbold CA (2010) Critical interplay between parasite differentiation, host immunity, and antigenic variation in trypanosome infections. Am Nat 176(4):424–439. doi: 10.1086/656276 PubMedCrossRefGoogle Scholar
  52. Gonzalez MR, Bischofberger M, Pernot L, van der Goot FG, Freche B (2008) Bacterial pore-forming toxins: the (w)hole story? Cell Mol Life Sci 65(3):493–507. doi: 10.1007/s00018-007-7434-y PubMedCrossRefGoogle Scholar
  53. Gordon EB, Hart GT, Tran TM, Waisberg M, Akkaya M, Skinner J, Zinocker S, Pena M, Yazew T, Qi CF, Miller LH, Pierce SK (2015) Inhibiting the Mammalian target of rapamycin blocks the development of experimental cerebral malaria. MBio 6(3):e00725. doi: 10.1128/mBio.00725-15 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Guo Y, Zhang Y, Hong K, Luo F, Gu Q, Lu N, Bai A (2014) AMPK inhibition blocks ROS-NFkappaB signaling and attenuates endotoxemia-induced liver injury. PLoS One 9(1):e86881. doi: 10.1371/journal.pone.0086881 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8(10):774–785. doi: 10.1038/nrm2249 PubMedCrossRefGoogle Scholar
  56. Hardie DG, Scott JW, Pan DA, Hudson ER (2003) Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett 546(1):113–120PubMedCrossRefGoogle Scholar
  57. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, Alessi DR, Hardie DG (2003) Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2(4):28. doi: 10.1186/1475-4924-2-28 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, Hardie DG (2005) Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2(1):9–19. doi: 10.1016/j.cmet.2005.05.009 PubMedCrossRefGoogle Scholar
  59. Hedbacker K, Carlson M (2008) SNF1/AMPK pathways in yeast. Front Biosci 13:2408–2420PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66(2):300–372PubMedPubMedCentralCrossRefGoogle Scholar
  61. Holmes BF, Kurth-Kraczek EJ, Winder WW (1999) Chronic activation of 5′-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J Appl Physiol 87(5):1990–1995PubMedGoogle Scholar
  62. Hood MI, Skaar EP (2012) Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 10(8):525–537. doi: 10.1038/nrmicro2836 PubMedCrossRefGoogle Scholar
  63. Hoogendijk AJ, Pinhancos SS, van der Poll T, Wieland CW (2013) AMP-activated protein kinase activation by 5-aminoimidazole-4-carbox-amide-1-beta-D-ribofuranoside (AICAR) reduces lipoteichoic acid-induced lung inflammation. J Biol Chem 288(10):7047–7052. doi: 10.1074/jbc.M112.413138 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Horman S, Vertommen D, Heath R, Neumann D, Mouton V, Woods A, Schlattner U, Wallimann T, Carling D, Hue L, Rider MH (2006) Insulin antagonizes ischemia-induced Thr172 phosphorylation of AMP-activated protein kinase alpha-subunits in heart via hierarchical phosphorylation of Ser485/491. J Biol Chem 281(9):5335–5340. doi: 10.1074/jbc.M506850200 PubMedCrossRefGoogle Scholar
  65. Horwitz MA (1983) The Legionnaires’ disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes. J Exp Med 158(6):2108–2126PubMedCrossRefGoogle Scholar
  66. Hu G, Cheng PY, Sham A, Perfect JR, Kronstad JW (2008) Metabolic adaptation in Cryptococcus neoformans during early murine pulmonary infection. Mol Microbiol 69(6):1456–1475. doi: 10.1111/j.1365-2958.2008.06374.x PubMedPubMedCentralCrossRefGoogle Scholar
  67. Huang H, Kang R, Wang J, Luo G, Yang W, Zhao Z (2013) Hepatitis C virus inhibits AKT-tuberous sclerosis complex (TSC), the mechanistic target of rapamycin (MTOR) pathway, through endoplasmic reticulum stress to induce autophagy. Autophagy 9(2):175–195. doi: 10.4161/auto.22791 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hull CM, Heitman J (2002) Genetics of Cryptococcus neoformans. Annu Rev Genet 36:557–615. doi: 10.1146/annurev.genet.36.052402.152652 PubMedCrossRefGoogle Scholar
  69. Hurtrel B, Petit F, Arnoult D, Muller-Trutwin M, Silvestri G, Estaquier J (2005) Apoptosis in SIV infection. Cell Death Differ 12(Suppl 1):979–990. doi: 10.1038/sj.cdd.4401600 PubMedCrossRefGoogle Scholar
  70. Hutterer C, Wandinger SK, Wagner S, Muller R, Stamminger T, Zeittrager I, Godl K, Baumgartner R, Strobl S, Marschall M (2013) Profiling of the kinome of cytomegalovirus-infected cells reveals the functional importance of host kinases Aurora A, ABL and AMPK. Antiviral Res 99(2):139–148. doi: 10.1016/j.antiviral.2013.04.017 PubMedCrossRefGoogle Scholar
  71. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115(5):577–590PubMedCrossRefGoogle Scholar
  72. Jeong KM, Choi JI, Lee SH, Lee HJ, Son JK, Seo CS, Song SW, Kwak SH, Bae HB (2014) Effect of sauchinone, a lignan from Saururus chinensis, on bacterial phagocytosis by macrophages. Eur J Pharmacol 728:176–182. doi: 10.1016/j.ejphar.2014.01.039 PubMedCrossRefGoogle Scholar
  73. Ji WT, Lee LH, Lin FL, Wang L, Liu HJ (2009) AMP-activated protein kinase facilitates avian reovirus to induce mitogen-activated protein kinase (MAPK) p38 and MAPK kinase 3/6 signalling that is beneficial for virus replication. J Gen Virol 90(Pt 12):3002–3009. doi: 10.1099/vir.0.013953-0 PubMedCrossRefGoogle Scholar
  74. Kang KY, Kim YK, Yi H, Kim J, Jung HR, Kim IJ, Cho JH, Park SH, Kim HY, Ju JH (2013) Metformin downregulates Th17 cells differentiation and attenuates murine autoimmune arthritis. Int Immunopharmacol 16(1):85–92. doi: 10.1016/j.intimp.2013.03.020 PubMedCrossRefGoogle Scholar
  75. Kelly B, O’Neill LA (2015) Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 25(7):771–784. doi: 10.1038/cr.2015.68 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kim YW, Lee SM, Shin SM, Hwang SJ, Brooks JS, Kang HE, Lee MG, Kim SC, Kim SG (2009) Efficacy of sauchinone as a novel AMPK-activating lignan for preventing iron-induced oxidative stress and liver injury. Free Radic Biol Med 47(7):1082–1092. doi: 10.1016/j.freeradbiomed.2009.07.018 PubMedCrossRefGoogle Scholar
  77. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141. doi: 10.1038/ncb2152 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kim JJ, Lee HM, Shin DM, Kim W, Yuk JM, Jin HS, Lee SH, Cha GH, Kim JM, Lee ZW, Shin SJ, Yoo H, Park YK, Park JB, Chung J, Yoshimori T, Jo EK (2012) Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action. Cell Host Microbe 11(5):457–468. doi: 10.1016/j.chom.2012.03.008 PubMedCrossRefGoogle Scholar
  79. Kim J, Kwak HJ, Cha JY, Jeong YS, Rhee SD, Kim KR, Cheon HG (2014) Metformin suppresses lipopolysaccharide (LPS)-induced inflammatory response in murine macrophages via activating transcription factor-3 (ATF-3) induction. J Biol Chem 289(33):23246–23255. doi: 10.1074/jbc.M114.577908 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kloft N, Neukirch C, Bobkiewicz W, Veerachato G, Busch T, von Hoven G, Boller K, Husmann M (2010) Pro-autophagic signal induction by bacterial pore-forming toxins. Med Microbiol Immunol 199(4):299–309. doi: 10.1007/s00430-010-0163-0 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kuchin S, Vyas VK, Carlson M (2002) Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol 22(12):3994–4000PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kudchodkar SB, Del Prete GQ, Maguire TG, Alwine JC (2007) AMPK-mediated inhibition of mTOR kinase is circumvented during immediate-early times of human cytomegalovirus infection. J Virol 81(7):3649–3651. doi: 10.1128/JVI.02079-06 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Kumar SH, Rangarajan A (2009) Simian virus 40 small T antigen activates AMPK and triggers autophagy to protect cancer cells from nutrient deprivation. J Virol 83(17):8565–8574. doi: 10.1128/JVI.00603-09 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Kumar D, Nath L, Kamal MA, Varshney A, Jain A, Singh S, Rao KV (2010) Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis. Cell 140(5):731–743. doi: 10.1016/j.cell.2010.02.012 PubMedCrossRefGoogle Scholar
  85. Kwon HS, Brent MM, Getachew R, Jayakumar P, Chen LF, Schnolzer M, McBurney MW, Marmorstein R, Greene WC, Ott M (2008) Human immunodeficiency virus type 1 Tat protein inhibits the SIRT1 deacetylase and induces T cell hyperactivation. Cell Host Microbe 3(3):158–167. doi: 10.1016/j.chom.2008.02.002 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Landfear SM (2011) Nutrient transport and pathogenesis in selected parasitic protozoa. Eukaryot Cell 10(4):483–493. doi: 10.1128/EC.00287-10 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lee W, VanderVen BC, Fahey RJ, Russell DG (2013) Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J Biol Chem 288(10):6788–6800. doi: 10.1074/jbc.M112.445056 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Levin DE (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69(2):262–291. doi: 10.1128/MMBR.69.2.262-291.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469(7330):323–335. doi: 10.1038/nature09782 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Li JV, Wang Y, Saric J, Nicholson JK, Dirnhofer S, Singer BH, Tanner M, Wittlin S, Holmes E, Utzinger J (2008) Global metabolic responses of NMRI mice to an experimental Plasmodium berghei infection. J Proteome Res 7(9):3948–3956. doi: 10.1021/pr800209d PubMedCrossRefGoogle Scholar
  91. Lorenz MC, Fink GR (2001) The glyoxylate cycle is required for fungal virulence. Nature 412(6842):83–86. doi: 10.1038/35083594 PubMedCrossRefGoogle Scholar
  92. Lv G, Zhu H, Zhou F, Lin Z, Lin G, Li C (2014) AMP-activated protein kinase activation protects gastric epithelial cells from Helicobacter pylori-induced apoptosis. Biochem Biophys Res Commun 453(1):13–18. doi: 10.1016/j.bbrc.2014.09.028 PubMedCrossRefGoogle Scholar
  93. MacIver NJ, Blagih J, Saucillo DC, Tonelli L, Griss T, Rathmell JC, Jones RG (2011) The liver kinase B1 is a central regulator of T cell development, activation, and metabolism. J Immunol 187(8):4187–4198. doi: 10.4049/jimmunol.1100367 PubMedPubMedCentralCrossRefGoogle Scholar
  94. MacRae JI, Sheiner L, Nahid A, Tonkin C, Striepen B, McConville MJ (2012) Mitochondrial metabolism of glucose and glutamine is required for intracellular growth of Toxoplasma gondii. Cell Host Microbe 12(5):682–692. doi: 10.1016/j.chom.2012.09.013 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Mankouri J, Tedbury PR, Gretton S, Hughes ME, Griffin SD, Dallas ML, Green KA, Hardie DG, Peers C, Harris M (2010) Enhanced hepatitis C virus genome replication and lipid accumulation mediated by inhibition of AMP-activated protein kinase. Proc Natl Acad Sci U S A 107(25):11549–11554. doi: 10.1073/pnas.0912426107 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Marsin AS, Bouzin C, Bertrand L, Hue L (2002) The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. J Biol Chem 277(34):30778–30783. doi: 10.1074/jbc.M205213200 PubMedCrossRefGoogle Scholar
  97. McArdle J, Schafer XL, Munger J (2011) Inhibition of calmodulin-dependent kinase kinase blocks human cytomegalovirus-induced glycolytic activation and severely attenuates production of viral progeny. J Virol 85(2):705–714. doi: 10.1128/JVI.01557-10 PubMedCrossRefGoogle Scholar
  98. McArdle J, Moorman NJ, Munger J (2012) HCMV targets the metabolic stress response through activation of AMPK whose activity is important for viral replication. PLoS Pathog 8(1):e1002502. doi: 10.1371/journal.ppat.1002502 PubMedPubMedCentralCrossRefGoogle Scholar
  99. McKinney JD, Honer zu Bentrup K, Munoz-Elias EJ, Miczak A, Chen B, Chan WT, Swenson D, Sacchettini JC, Jacobs WR Jr, Russell DG (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406(6797):735–738. doi: 10.1038/35021074 PubMedCrossRefGoogle Scholar
  100. Meares GP, Qin H, Liu Y, Holdbrooks AT, Benveniste EN (2013) AMP-activated protein kinase restricts IFN-gamma signaling. J Immunol 190(1):372–380. doi: 10.4049/jimmunol.1202390 PubMedCrossRefGoogle Scholar
  101. Mehla R, Bivalkar-Mehla S, Zhang R, Handy I, Albrecht H, Giri S, Nagarkatti P, Nagarkatti M, Chauhan A (2010) Bryostatin modulates latent HIV-1 infection via PKC and AMPK signaling but inhibits acute infection in a receptor independent manner. PLoS One 5(6):e11160. doi: 10.1371/journal.pone.0011160 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Miranda-Saavedra D, Stark MJ, Packer JC, Vivares CP, Doerig C, Barton GJ (2007) The complement of protein kinases of the microsporidium Encephalitozoon cuniculi in relation to those of Saccharomyces cerevisiae and Schizosaccharomyces pombe. BMC Genomics 8:309. doi: 10.1186/1471-2164-8-309 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Mitchell TG, Perfect JR (1995) Cryptococcosis in the era of AIDS—100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev 8(4):515–548PubMedPubMedCentralGoogle Scholar
  104. Monceaux V, Estaquier J, Fevrier M, Cumont MC, Riviere Y, Aubertin AM, Ameisen JC, Hurtrel B (2003) Extensive apoptosis in lymphoid organs during primary SIV infection predicts rapid progression towards AIDS. AIDS 17(11):1585–1596. doi: 10.1097/01.aids.0000076286.54156.d6 PubMedCrossRefGoogle Scholar
  105. Mony BM, Matthews KR (2015) Assembling the components of the quorum sensing pathway in African trypanosomes. Mol Microbiol 96(2):220–232. doi: 10.1111/mmi.12949 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Mony BM, MacGregor P, Ivens A, Rojas F, Cowton A, Young J, Horn D, Matthews K (2014) Genome-wide dissection of the quorum sensing signalling pathway in Trypanosoma brucei. Nature 505(7485):681–685. doi: 10.1038/nature12864 PubMedCrossRefGoogle Scholar
  107. Moreau K, Lacas-Gervais S, Fujita N, Sebbane F, Yoshimori T, Simonet M, Lafont F (2010) Autophagosomes can support Yersinia pseudotuberculosis replication in macrophages. Cell Microbiol 12(8):1108–1123. doi: 10.1111/j.1462-5822.2010.01456.x PubMedCrossRefGoogle Scholar
  108. Moreira D, Rodrigues V, Abengozar M, Rivas L, Rial E, Laforge M, Li X, Foretz M, Viollet B, Estaquier J, Cordeiro da Silva A, Silvestre R (2015a) Leishmania infantum modulates host macrophage mitochondrial metabolism by hijacking the SIRT1-AMPK axis. PLoS Pathog 11(3):e1004684. doi: 10.1371/journal.ppat.1004684 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Moreira D, Silvestre R, Cordeiro-da-Silva A, Estaquier J, Foretz M, Viollet B (2015b) AMP-activated protein kinase as a target for pathogens: friends or foes? Curr Drug Targets. doi: 10.1007/978-3-319-43589-3 [pii]
  110. Moseley CE, Webster RG, Aldridge JR (2010) Peroxisome proliferator-activated receptor and AMP-activated protein kinase agonists protect against lethal influenza virus challenge in mice. Influenza Other Respi Viruses 4(5):307–311. doi: 10.1111/j.1750-2659.2010.00155.x CrossRefGoogle Scholar
  111. Moser TS, Jones RG, Thompson CB, Coyne CB, Cherry S (2010) A kinome RNAi screen identified AMPK as promoting poxvirus entry through the control of actin dynamics. PLoS Pathog 6(6):e1000954. doi: 10.1371/journal.ppat.1000954 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Moser TS, Schieffer D, Cherry S (2012) AMP-activated kinase restricts Rift Valley fever virus infection by inhibiting fatty acid synthesis. PLoS Pathog 8(4):e1002661. doi: 10.1371/journal.ppat.1002661 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Munoz-Elias EJ, McKinney JD (2005) Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11(6):638–644. doi: 10.1038/nm1252 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  114. Naderer T, Heng J, Saunders EC, Kloehn J, Rupasinghe TW, Brown TJ, McConville MJ (2015) Intracellular survival of leishmania major depends on uptake and degradation of extracellular matrix glycosaminoglycans by macrophages. PLoS Pathog 11(9):e1005136. doi: 10.1371/journal.ppat.1005136 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Nagajyothi F, Desruisseaux MS, Thiruvur N, Weiss LM, Braunstein VL, Albanese C, Teixeira MM, de Almeida CJ, Lisanti MP, Scherer PE, Tanowitz HB (2008) Trypanosoma cruzi infection of cultured adipocytes results in an inflammatory phenotype. Obesity (Silver Spring) 16(9):1992–1997CrossRefGoogle Scholar
  116. Nakashima K, Takeuchi K, Chihara K, Hotta H, Sada K (2011) Inhibition of hepatitis C virus replication through adenosine monophosphate-activated protein kinase-dependent and -independent pathways. Microbiol Immunol 55(11):774–782. doi: 10.1111/j.1348-0421.2011.00382.x PubMedCrossRefGoogle Scholar
  117. Navarro-Garcia F, Sanchez M, Nombela C, Pla J (2001) Virulence genes in the pathogenic yeast Candida albicans. FEMS Microbiol Rev 25(2):245–268PubMedCrossRefGoogle Scholar
  118. Ng HC, Singh M, Jeyaseelan K (1995) Identification of two protein serine/threonine kinase genes and molecular cloning of a SNF1 type protein kinase gene from Toxoplasma gondii. Biochem Mol Biol Int 35(1):155–165PubMedGoogle Scholar
  119. Ng HC, Singh M, Jeyaseelan K (1997) Nucleotide sequence of ToxPK1 gene from Toxoplasma gondii. DNA Seq 7(3-4):179–191PubMedCrossRefGoogle Scholar
  120. Nieves W, Oniskey T, Hung L, Herbert D (2014) Metabolic regulation of type 2 immunity controls tissue repair. In: 63rd annual ASTMH meeting, New Orleans, USA, 2–6 November 2014Google Scholar
  121. Ong CW, Elkington PT, Brilha S, Ugarte-Gil C, Tome-Esteban MT, Tezera LB, Pabisiak PJ, Moores RC, Sathyamoorthy T, Patel V, Gilman RH, Porter JC, Friedland JS (2015) Neutrophil-derived MMP-8 drives AMPK-dependent matrix destruction in human pulmonary tuberculosis. PLoS Pathog 11(5):e1004917. doi: 10.1371/journal.ppat.1004917 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Pagans S, Pedal A, North BJ, Kaehlcke K, Marshall BL, Dorr A, Hetzer-Egger C, Henklein P, Frye R, McBurney MW, Hruby H, Jung M, Verdin E, Ott M (2005) SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol 3(2):e41. doi: 10.1371/journal.pbio.0030041 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Pandey AK, Sassetti CM (2008) Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci U S A 105(11):4376–4380. doi: 10.1073/pnas.0711159105 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Park CY, Jun HJ, Wakita T, Cheong JH, Hwang SB (2009) Hepatitis C virus nonstructural 4B protein modulates sterol regulatory element-binding protein signaling via the AKT pathway. J Biol Chem 284(14):9237–9246. doi: 10.1074/jbc.M808773200 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Park DW, Jiang S, Tadie JM, Stigler WS, Gao Y, Deshane J, Abraham E, Zmijewski JW (2013) Activation of AMPK enhances neutrophil chemotaxis and bacterial killing. Mol Med 19:387–398. doi: 10.2119/molmed.2013.00065 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Parsons M, Worthey EA, Ward PN, Mottram JC (2005) Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi. BMC Genomics 6:127. doi: 10.1186/1471-2164-6-127 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Petter R, Kwon-Chung KJ (1996) Disruption of the SNF1 gene abolishes trehalose utilization in the pathogenic yeast Candida glabrata. Infect Immun 64(12):5269–5273PubMedPubMedCentralGoogle Scholar
  128. Petter R, Chang YC, Kwon-Chung KJ (1997) A gene homologous to Saccharomyces cerevisiae SNF1 appears to be essential for the viability of Candida albicans. Infect Immun 65(12):4909–4917PubMedPubMedCentralGoogle Scholar
  129. Plummer R, Lorigan P, Steven N, Scott L, Middleton MR, Wilson RH, Mulligan E, Curtin N, Wang D, Dewji R, Abbattista A, Gallo J, Calvert H (2013) A phase II study of the potent PARP inhibitor, Rucaparib (PF-01367338, AG014699), with temozolomide in patients with metastatic melanoma demonstrating evidence of chemopotentiation. Cancer Chemother Pharmacol 71(5):1191–1199. doi: 10.1007/s00280-013-2113-1 PubMedCrossRefGoogle Scholar
  130. Polge C, Thomas M (2007) SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control? Trends Plant Sci 12(1):20–28. doi: 10.1016/j.tplants.2006.11.005 PubMedCrossRefGoogle Scholar
  131. Pollitt LC, Mideo N, Drew DR, Schneider P, Colegrave N, Reece SE (2011) Competition and the evolution of reproductive restraint in malaria parasites. Am Nat 177(3):358–367. doi: 10.1086/658175 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Rabhi I, Rabhi S, Ben-Othman R, Rasche A, Daskalaki A, Trentin B, Piquemal D, Regnault B, Descoteaux A, Guizani-Tabbane L, Sysco C (2012) Transcriptomic signature of Leishmania infected mice macrophages: a metabolic point of view. PLoS Negl Trop Dis 6(8):e1763. doi: 10.1371/journal.pntd.0001763 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Raffatellu M, Santos RL, Verhoeven DE, George MD, Wilson RP, Winter SE, Godinez I, Sankaran S, Paixao TA, Gordon MA, Kolls JK, Dandekar S, Baumler AJ (2008) Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat Med 14(4):421–428. doi: 10.1038/nm1743 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Ramsook CB, Tan C, Garcia MC, Fung R, Soybelman G, Henry R, Litewka A, O’Meally S, Otoo HN, Khalaf RA, Dranginis AM, Gaur NK, Klotz SA, Rauceo JM, Jue CK, Lipke PN (2010) Yeast cell adhesion molecules have functional amyloid-forming sequences. Eukaryot Cell 9(3):393–404. doi: 10.1128/EC.00068-09 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Reece SE, Pollitt LC, Colegrave N, Gardner A (2011) The meaning of death: evolution and ecology of apoptosis in protozoan parasites. PLoS Pathog 7(12):e1002320. doi: 10.1371/journal.ppat.1002320 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Rey-Jurado E, Riedel CA, Gonzalez PA, Bueno SM, Kalergis AM (2015) Contribution of autophagy to antiviral immunity. FEBS Lett 589(22):3461–3470. doi: 10.1016/j.febslet.2015.07.047 PubMedCrossRefGoogle Scholar
  137. Rhee KY, de Carvalho LP, Bryk R, Ehrt S, Marrero J, Park SW, Schnappinger D, Venugopal A, Nathan C (2011) Central carbon metabolism in Mycobacterium tuberculosis: an unexpected frontier. Trends Microbiol 19(7):307–314. doi: 10.1016/j.tim.2011.03.008 PubMedPubMedCentralCrossRefGoogle Scholar
  138. Rolf J, Zarrouk M, Finlay DK, Foretz M, Viollet B, Cantrell DA (2013) AMPKalpha1: a glucose sensor that controls CD8 T-cell memory. Eur J Immunol 43(4):889–896. doi: 10.1002/eji.201243008 PubMedPubMedCentralCrossRefGoogle Scholar
  139. Romero-Gomez M, Diago M, Andrade RJ, Calleja JL, Salmeron J, Fernandez-Rodriguez CM, Sola R, Garcia-Samaniego J, Herrerias JM, De la Mata M, Moreno-Otero R, Nunez O, Olveira A, Duran S, Planas R, Spanish Treatment of Resistance to Insulin in Hepatitis C Genotype 1 Group (2009) Treatment of insulin resistance with metformin in naive genotype 1 chronic hepatitis C patients receiving peginterferon alfa-2a plus ribavirin. Hepatology 50(6):1702–1708. doi: 10.1002/hep.23206 PubMedCrossRefGoogle Scholar
  140. Rousset F, Roze D (2007) Constraints on the origin and maintenance of genetic kin recognition. Evolution 61(10):2320–2330. doi: 10.1111/j.1558-5646.2007.00191.x PubMedCrossRefGoogle Scholar
  141. Sag D, Carling D, Stout RD, Suttles J (2008) Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol 181(12):8633–8641. doi: 10.4049/jimmunol.181.12.8633 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  142. Sales-Dias J (2011) The role of glucose in Plasmodium liver infection. Biochemistry, University of Lisbon, LisbonGoogle Scholar
  143. Sampaio-Marques B, Burhans WC, Ludovico P (2014) Longevity pathways and maintenance of the proteome: the role of autophagy and mitophagy during yeast ageing. Microb Cell 1(4):118–127CrossRefGoogle Scholar
  144. Santarelli R, Granato M, Faggioni A, Cirone M (2015) Interference with the autophagic process as a viral strategy to escape from the immune control: lesson from gamma herpesviruses. J Immunol Res 2015:546063. doi: 10.1155/2015/546063 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Sanz P (2003) Snf1 protein kinase: a key player in the response to cellular stress in yeast. Biochem Soc Trans 31(Pt 1):178–181. doi: 10.1042/bst0310178 PubMedCrossRefGoogle Scholar
  146. Schubert-Unkmeir A, Sokolova O, Panzner U, Eigenthaler M, Frosch M (2007) Gene expression pattern in human brain endothelial cells in response to Neisseria meningitidis. Infect Immun 75(2):899–914. doi: 10.1128/IAI.01508-06 PubMedCrossRefGoogle Scholar
  147. Seo JY, Cresswell P (2013) Viperin regulates cellular lipid metabolism during human cytomegalovirus infection. PLoS Pathog 9(8):e1003497. doi: 10.1371/journal.ppat.1003497 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, Cantley LC (2004) The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6(1):91–99. doi: 10.1016/j.ccr.2004.06.007 PubMedCrossRefGoogle Scholar
  149. Shin DM, Yuk JM, Lee HM, Lee SH, Son JW, Harding CV, Kim JM, Modlin RL, Jo EK (2010) Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cell Microbiol 12(11):1648–1665. doi: 10.1111/j.1462-5822.2010.01497.x PubMedPubMedCentralCrossRefGoogle Scholar
  150. Singhal A, Jie L, Kumar P, Hong GS, Leow MK, Paleja B, Tsenova L, Kurepina N, Chen J, Zolezzi F, Kreiswirth B, Poidinger M, Chee C, Kaplan G, Wang YT, De Libero G (2014) Metformin as adjunct antituberculosis therapy. Sci Transl Med 6(263):263ra159. doi: 10.1126/scitranslmed.3009885 PubMedCrossRefGoogle Scholar
  151. Sorbara MT, Girardin SE (2015) Emerging themes in bacterial autophagy. Curr Opin Microbiol 23:163–170. doi: 10.1016/j.mib.2014.11.020 PubMedCrossRefGoogle Scholar
  152. Steele S, Brunton J, Ziehr B, Taft-Benz S, Moorman N, Kawula T (2013) Francisella tularensis harvests nutrients derived via ATG5-independent autophagy to support intracellular growth. PLoS Pathog 9(8):e1003562. doi: 10.1371/journal.ppat.1003562 PubMedPubMedCentralCrossRefGoogle Scholar
  153. Stein SC, Woods A, Jones NA, Davison MD, Carling D (2000) The regulation of AMP-activated protein kinase by phosphorylation. Biochem J 345(Pt 3):437–443PubMedPubMedCentralCrossRefGoogle Scholar
  154. Street A, Macdonald A, Crowder K, Harris M (2004) The Hepatitis C virus NS5A protein activates a phosphoinositide 3-kinase-dependent survival signaling cascade. J Biol Chem 279(13):12232–12241. doi: 10.1074/jbc.M312245200 PubMedCrossRefGoogle Scholar
  155. Tang Y, Li F, Tan B, Liu G, Kong X, Hardwidge PR, Yin Y (2014) Enterotoxigenic Escherichia coli infection induces intestinal epithelial cell autophagy. Vet Microbiol 171(1-2):160–164. doi: 10.1016/j.vetmic.2014.03.025 PubMedCrossRefGoogle Scholar
  156. Tattoli I, Sorbara MT, Vuckovic D, Ling A, Soares F, Carneiro LA, Yang C, Emili A, Philpott DJ, Girardin SE (2012) Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe 11(6):563–575. doi: 10.1016/j.chom.2012.04.012 PubMedCrossRefGoogle Scholar
  157. Terry LJ, Vastag L, Rabinowitz JD, Shenk T (2012) Human kinome profiling identifies a requirement for AMP-activated protein kinase during human cytomegalovirus infection. Proc Natl Acad Sci U S A 109(8):3071–3076. doi: 10.1073/pnas.1200494109 PubMedPubMedCentralCrossRefGoogle Scholar
  158. Tewari R, Straschil U, Bateman A, Bohme U, Cherevach I, Gong P, Pain A, Billker O (2010) The systematic functional analysis of Plasmodium protein kinases identifies essential regulators of mosquito transmission. Cell Host Microbe 8(4):377–387. doi: 10.1016/j.chom.2010.09.006 PubMedPubMedCentralCrossRefGoogle Scholar
  159. Tilney LG, Harb OS, Connelly PS, Robinson CG, Roy CR (2001) How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane. J Cell Sci 114(Pt 24):4637–4650PubMedGoogle Scholar
  160. Tsoyi K, Jang HJ, Nizamutdinova IT, Kim YM, Lee YS, Kim HJ, Seo HG, Lee JH, Chang KC (2011) Metformin inhibits HMGB1 release in LPS-treated RAW 264.7 cells and increases survival rate of endotoxaemic mice. Br J Pharmacol 162(7):1498–1508. doi: 10.1111/j.1476-5381.2010.01126.x PubMedPubMedCentralCrossRefGoogle Scholar
  161. van Zandbergen G, Luder CG, Heussler V, Duszenko M (2010) Programmed cell death in unicellular parasites: a prerequisite for sustained infection? Trends Parasitol 26(10):477–483. doi: 10.1016/j.pt.2010.06.008 PubMedCrossRefGoogle Scholar
  162. Vassella E, Reuner B, Yutzy B, Boshart M (1997) Differentiation of African trypanosomes is controlled by a density sensing mechanism which signals cell cycle arrest via the cAMP pathway. J Cell Sci 110(Pt 21):2661–2671PubMedGoogle Scholar
  163. Vickerman K (1985) Developmental cycles and biology of pathogenic trypanosomes. Br Med Bull 41(2):105–114PubMedCrossRefGoogle Scholar
  164. Vincent O, Carlson M (1999) Gal83 mediates the interaction of the Snf1 kinase complex with the transcription activator Sip4. EMBO J 18(23):6672–6681. doi: 10.1093/emboj/18.23.6672 PubMedPubMedCentralCrossRefGoogle Scholar
  165. Wang Y, Utzinger J, Saric J, Li JV, Burckhardt J, Dirnhofer S, Nicholson JK, Singer BH, Brun R, Holmes E (2008) Global metabolic responses of mice to Trypanosoma brucei brucei infection. Proc Natl Acad Sci U S A 105(16):6127–6132. doi: 10.1073/pnas.0801777105 PubMedPubMedCentralCrossRefGoogle Scholar
  166. Waterman SR, Hacham M, Panepinto J, Hu G, Shin S, Williamson PR (2007) Cell wall targeting of laccase of Cryptococcus neoformans during infection of mice. Infect Immun 75(2):714–722. doi: 10.1128/IAI.01351-06 PubMedCrossRefGoogle Scholar
  167. Winder WW, Hardie DG (1996) Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol 270(2 Pt 1):E299–E304PubMedGoogle Scholar
  168. Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, Schlattner U, Wallimann T, Carlson M, Carling D (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13(22):2004–2008PubMedCrossRefGoogle Scholar
  169. Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M, Carling D (2005) Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2(1):21–33. doi: 10.1016/j.cmet.2005.06.005 PubMedCrossRefGoogle Scholar
  170. Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D, Jing C, Walker PA, Eccleston JF, Haire LF, Saiu P, Howell SA, Aasland R, Martin SR, Carling D, Gamblin SJ (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472(7342):230–233. doi: 10.1038/nature09932 PubMedPubMedCentralCrossRefGoogle Scholar
  171. Yang K, Chi H (2015) AMPK helps T cells survive nutrient starvation. Immunity 42(1):4–6. doi: 10.1016/j.immuni.2014.12.029 PubMedCrossRefGoogle Scholar
  172. Yang J, Li D, Liu X, Pan J, Yan B, Zhu X (2010a) Regulation of virulence factors, carbon utilization and virulence by SNF1 in Cryptococcus neoformans JEC21 and divergent actions of SNF1 between cryptococcal strains. Fungal Genet Biol 47(12):994–1000. doi: 10.1016/j.fgb.2010.08.002 PubMedCrossRefGoogle Scholar
  173. Yang Z, Kahn BB, Shi H, Xue BZ (2010b) Macrophage alpha1 AMP-activated protein kinase (alpha1AMPK) antagonizes fatty acid-induced inflammation through SIRT1. J Biol Chem 285(25):19051–19059. doi: 10.1074/jbc.M110.123620 PubMedPubMedCentralCrossRefGoogle Scholar
  174. Yang J, Li D, Pan J, Zhu X (2011) Snf1/AMPK protein kinase modulates cell wall integrity in the human pathogenic yeast Cryptococcus neoformans. Wei Sheng Wu Xue Bao 51(6):740–746PubMedGoogle Scholar
  175. Yang D, Xue B, Wang X, Yu X, Liu N, Gao Y, Liu C, Zhu H (2013) 2-octynoic acid inhibits hepatitis C virus infection through activation of AMP-activated protein kinase. PLoS One 8(5):e64932. doi: 10.1371/journal.pone.0064932 PubMedPubMedCentralCrossRefGoogle Scholar
  176. Yang CS, Kim JJ, Lee HM, Jin HS, Lee SH, Park JH, Kim SJ, Kim JM, Han YM, Lee MS, Kweon GR, Shong M, Jo EK (2014) The AMPK-PPARGC1A pathway is required for antimicrobial host defense through activation of autophagy. Autophagy 10(5):785–802. doi: 10.4161/auto.28072 PubMedPubMedCentralCrossRefGoogle Scholar
  177. Yu JW, Sun LJ, Liu W, Zhao YH, Kang P, Yan BZ (2013) Hepatitis C virus core protein induces hepatic metabolism disorders through down-regulation of the SIRT1-AMPK signaling pathway. Int J Infect Dis 17(7):e539–e545. doi: 10.1016/j.ijid.2013.01.027 PubMedCrossRefGoogle Scholar
  178. Yuk JM, Shin DM, Lee HM, Yang CS, Jin HS, Kim KK, Lee ZW, Lee SH, Kim JM, Jo EK (2009) Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe 6(3):231–243. doi: 10.1016/j.chom.2009.08.004 PubMedCrossRefGoogle Scholar
  179. Zangger H, Mottram JC, Fasel N (2002) Cell death in Leishmania induced by stress and differentiation: programmed cell death or necrosis? Cell Death Differ 9(10):1126–1139. doi: 10.1038/sj.cdd.4401071 PubMedCrossRefGoogle Scholar
  180. Zhang HS, Wu MR (2009) SIRT1 regulates Tat-induced HIV-1 transactivation through activating AMP-activated protein kinase. Virus Res 146(1–2):51–57. doi: 10.1016/j.virusres.2009.08.005 PubMedCrossRefGoogle Scholar
  181. Zhang HS, Ruan Z, Sang WW (2011) HDAC1/NFkappaB pathway is involved in curcumin inhibiting of Tat-mediated long terminal repeat transactivation. J Cell Physiol 226(12):3385–3391. doi: 10.1002/jcp.22691 PubMedCrossRefGoogle Scholar
  182. Zhang Z, Wang S, Huang J, Liu L, Lu M, Li M, Sui Y, Xu L, Yan R, Song X, Li X (2015) Proteomic analysis of Eimeria acervulina sporozoite proteins interaction with duodenal epithelial cells by shotgun LC-MS/MS. Mol Biochem Parasitol 202(2):29–33. doi: 10.1016/j.molbiopara.2015.09.006 PubMedCrossRefGoogle Scholar
  183. Zhao Z, Hu J, Gao X, Liang H, Liu Z (2014) Activation of AMPK attenuates lipopolysaccharide-impaired integrity and function of blood-brain barrier in human brain microvascular endothelial cells. Exp Mol Pathol 97(3):386–392. doi: 10.1016/j.yexmp.2014.09.006 PubMedCrossRefGoogle Scholar
  184. Zhao H, Zhu H, Lin Z, Lin G, Lv G (2015) Compound 13, an alpha1-selective small molecule activator of AMPK, inhibits Helicobacter pylori-induced oxidative stresses and gastric epithelial cell apoptosis. Biochem Biophys Res Commun 463(4):510–517. doi: 10.1016/j.bbrc.2015.05.059 PubMedCrossRefGoogle Scholar
  185. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108(8):1167–1174. doi: 10.1172/JCI13505 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Inês Mesquita
    • 1
    • 2
  • Diana Moreira
    • 3
    • 4
    • 5
  • Belém Sampaio-Marques
    • 1
    • 2
  • Mireille Laforge
    • 6
  • Anabela Cordeiro-da-Silva
    • 3
    • 4
    • 5
  • Paula Ludovico
    • 1
    • 2
  • Jérôme Estaquier
    • 6
    • 7
  • Ricardo Silvestre
    • 1
    • 2
    Email author
  1. 1.Life and Health Sciences Research Institute (ICVS), School of Health SciencesUniversity of MinhoBragaPortugal
  2. 2.ICVS/3Bs-PT Government Associate LaboratoryGuimarães, BragaPortugal
  3. 3.i3S-Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
  4. 4.IBMC-Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
  5. 5.Departamento de Ciências Biológicas, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
  6. 6.CNRS FR 3636Université Paris DescartesParisFrance
  7. 7.Centre de Recherche du CHU de QuébecUniversité LavalQuébecCanada

Personalised recommendations