Skip to main content

Aspects of Algebraic Quantum Theory: A Tribute to Hans Primas

  • Chapter
  • First Online:
From Chemistry to Consciousness

Abstract

This paper outlines the common ground between the algebraic approach to quantum phenomena proposed by Hans Primas and the ideas lying behind David Bohm’s notion of the implicate and explicate order. The latter emerged from what he called “an algebraic description of structure- process” which, in terms of formal logic, was a way to study the relation between a non-Boolean (implicate) quantum logic and its Boolean (explicate) projections. We show that in the implicate order, we have two time-evolution equations, one involving a commutator, which is essentially Heisenberg’s equation of motion, and the other involving an anti-commutator or Jordan product. Explicate orders emerge from projections into, or shadows on, Boolean sub-structures, a process that Primas has likened to “pattern recognition”. These projections produce equations that form the basis of what has been called the de Broglie–Bohm interpretation of quantum mechanics. By exploiting the properties of the orthogonal Clifford algebras, this model has been generalized to include relativistic systems with spin, giving a novel insight into the whole approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that what they called a B*-algebra in 1978 is nowadays usually referred to as a C*-algebra.

References

  • Abramsky, S., and Coecke, B. (2004): A categorical semantics of quantum protocols. In Logic in Computer Science, IEEE Computer Society, Washington DC, pp. 415–425.

    Google Scholar 

  • Bohm, D. (1965): Space, time, and the quantum theory understood in terms of discrete structural process. Proceedings of the International Conference on Elementary Particles, Kyoto, pp. 252–287.

    Google Scholar 

  • Bohm, D. (1971): Space-time geometry as an abstraction from spinor ordering. In Perspectives in Quantum Theory: Essays in Honour of Alfred Landé, ed. by W. Yourgrau, MIT Press, Cambridge, pp. 78–90.

    Google Scholar 

  • Bohm, D. (1980): Wholeness and the Implicate Order, Routledge, London.

    Google Scholar 

  • Bohm, D.J., Hiley, B.J., and Stuart, A.E.G. (1970): On a new mode of description in physics. International Journal of Theoretical Physics 3, 171–183.

    Google Scholar 

  • Born M., and Jordan P. (1925): Zur Quantenmechanik. Zeitschrift für Physik 34, 858–888.

    Google Scholar 

  • Brown, M.R., and Hiley, B.J. (2000): Schrödinger revisited: the role of Dirac’s “standard” ket in the algebraic approach. Preprint accessible at at http://arxiv.org/abs/quant-ph/0005026.

  • Clifford W.K. (1882): Further note on biquaternions. In Mathematical Papers XLII, ed. by R. Tucker, Macmillan, London, pp. 385–394.

    Google Scholar 

  • Coecke, B. (2005): Kindergarten quantum mechanics. In Quantum Theory: Reconsiderations of Foundations III, ed. by A. Khrennikov, AIP Press, New York, pp. 81–98.

    Google Scholar 

  • Crumeyrolle A. (1990): Orthogonal and Symplectic Clifford Algebras: Spinor Structures, Kluwer, Dordrecht.

    Google Scholar 

  • Domb, C., and Hiley, B.J. (1962): On the method of Yvon in crystal statistics. Proceedings of the Royal Society A268, 506–526.

    Google Scholar 

  • Eddington, A.S. (1936): Relativity Theory of Protons and Electrons, Cambridge University Press, Cambridge.

    Google Scholar 

  • Eddington, A.S. (1958): The Philosophy of Physical Science, University of Michigan Press, Ann Arbor.

    Google Scholar 

  • Finkelstein, D. (1968): Matter, space and logic. In Boston Studies in the Philosophy of Science V, ed. by R.S. Cohen and M.W. Wartowsky, Reidel, Dordrecht, pp. 199–215.

    Google Scholar 

  • d’Espagnat, B. (2003): Veiled Reality: An Analysis of Present-Day Quantum Mechanical Concepts, Westview Press, Boulder.

    Google Scholar 

  • Finkelstein, D. (1969): Matter, space, and logic. In Boston Studies in the Philosophy of Science V, ed. by R.S. Cohen and M.W. Wartowsky, Reidel, Dordrecht, pp. 199–215.

    Google Scholar 

  • Finkelstein, D. (1987): All is flux. In Quantum Implications: Essays in Honour of David Bohm, ed. by B.J. Hiley and D. Peat, D., Routledge and Kegan Paul, London, pp. 289–294.

    Google Scholar 

  • Finkelstein, D.R. (1996): Quantum Relativity: A Synthesis of the Ideas of Einstein and Heisenberg, Springer, Berlin.

    Google Scholar 

  • Grassmann, H.G. (1894): Gesammelte mathematische und physikalische Werke, Teubner, Leipzig.

    Google Scholar 

  • Grassmann, H.G. (1995): A New Branch of Mathematics: the Ausdehnungslehre of 1844 and Other Works, translated by L.C. Kannenberg, Open Court, Chicago.

    Google Scholar 

  • Hamilton, W. R. (1967): Mathematical Papers, Vol. 3: Algebra, Cambridge University Press, Cambridge.

    Google Scholar 

  • Heisenberg, W. (1958): Physics and Philosophy: The Revolution in Modern Science, George Allen and Unwin, London.

    Google Scholar 

  • Hiley, B.J. (2001): A note on the role of idempotents in the extended Heisenberg Algebra. In Implications (ANPA 22), Alternative Natural Philosophy Association, Cambridge, pp. 107–121.

    Google Scholar 

  • Hiley, B.J. (2015): On the relationship between the Moyal algebra and the quantum operator algebra of von Neumann. Journal of Computational Electronics 14, 869–878.

    Google Scholar 

  • Hiley, B.J., Burke, T., and Finney, J. (1977): Self-avoiding walks on irregular structures. Journal of Physics A10, 197–204.

    Google Scholar 

  • Hiley, B.J., and Callaghan, R.E. (2010): The Clifford algebra approach to quantum mechanics A: The Schrödinger and Pauli particles. Preprint accessible at arXiv:1011.4031.

  • Hiley, B.J., and Callaghan, R.E. (2012): Clifford algebras and the Dirac-Bohm quantum Hamilton-Jacobi equation. Foundations of Physics 42, 192–208.

    Google Scholar 

  • Hiley, B.J., and Frescura, F.A.M. (1980): The implicate order, algebras and the spinor. Foundations of Physics 10, 7–31.

    Google Scholar 

  • Jones, V.F.R. (1986): A new knot polynomial and von Neumann algebras. Notices of the American Mathematical Society 33, 219–225.

    Google Scholar 

  • Jones, V.F.R. (2003): Von Neumann algebras. Lecture notes accessible at http://www.math.berkeley.edu/vfr/MATH20909/VonNeumann2009.pdf.

  • Kauffman, L.H. (2001): Knots and Physics, World Scientific, Singapore.

    Google Scholar 

  • Khalkhali, M. (2009): Basic Non-Commutative Geometry, EMS Publishing, Zurich.

    Google Scholar 

  • Murray, F.J., and von Neumann, J. (1936): On rings of operators. Annals of Mathematics 37, 116–229.

    Google Scholar 

  • Onsager, L. (1944): Crystal statistics. I. A two-dimensional model with an order-disorder transition. Physical Review 65, 117–149.

    Google Scholar 

  • Penrose, R. (1967): Twistor algebra. Journal of Mathematical Physics 8, 345–366.

    Google Scholar 

  • Penrose, R. (1971): Angular momentum: A combinatorial approach to space-time. In Quantum Theory and Beyond, ed. by T. Bastin, Cambridge University Press, Cambridge, pp. 151–180.

    Google Scholar 

  • Philippidis, C., Dewdney, C., and Hiley, B.J. (1979): Quantum interference and the quantum potential. Nuovo Cimento 52B, 15–28.

    Google Scholar 

  • Primas, H.(1977): Theory reduction and non-Boolean theories. Journal of Mathematical Biology 4, 281–301.

    Google Scholar 

  • Primas, H., and Müller-Herold, U. (1978): Quantum mechanical system theory: A unifying framework for observations and stochastic processes in quantum mechanics. Advances in Chemical Physics 38, 1–107.

    Google Scholar 

  • Schönberg, M. (1957): Quantum mechanics and geometry. Anais da Academia Brasileira de Ciencias 29, 473–485.

    Google Scholar 

  • Weyl, H. (1931): The Theory of Groups and Quantum Mechanics, Dover, London.

    Google Scholar 

  • Wheeler, J.A. (1991): At Home in the Universe, AIP Press, New York.

    Google Scholar 

Download references

Acknowledgments

I should like to thank Glen Dennis for his suggestions and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basil J. Hiley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hiley, B.J. (2016). Aspects of Algebraic Quantum Theory: A Tribute to Hans Primas. In: Atmanspacher, H., Müller-Herold, U. (eds) From Chemistry to Consciousness. Springer, Cham. https://doi.org/10.1007/978-3-319-43573-2_7

Download citation

Publish with us

Policies and ethics