Skip to main content

Theoretical Chemistry and More: Personal Annotations to Hans Primas and His Work

  • Chapter
  • First Online:
From Chemistry to Consciousness
  • 605 Accesses

Abstract

In the mid 1960s, Hans Primas concentrated on research into the enigmatic relation between chemistry and quantum mechanics: How can a molecule exhibit purely classical features as in stereochemical ball-and-stick models alongside purely quantal properties as in chemical spectroscopy? Due to the discovery of superselection rules in the 1950s Primas was able to propose a solution in terms of classical observables. In this vein he contributed to the theory of chirality and to the measurement problem of quantum mechanics. In addition, he initiated research on elementary systems and the construction of observables in general. At the end of the 1970s, a permanent discussion topic in the Primas group was reductionism: How can a given theoretical description be related to more fundamental lower-level theories? Primas’ magnum opus Chemistry, Quantum Mechanics and Reductionism of 1981 addresses this question, which is difficult and controversial at the same time. After his retirement, Primas restarted earlier work on time and irreversibility. This culminated in a seminal paper on “Time-Entanglement between Mind and Matter” in 2003 that explores Wolfgang Pauli’s idea that mind and matter are complementary aspects of the same reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Roughly speaking, an observable is called classical if there is no other observable such that their joint dispersion-free measurement is impossible. Otherwise it is quantum mechanical (“quantal”).

  2. 2.

    The electronic single-particle Green’s function of a molecular system can be directly calculated from an integro-differential equation, which avoids having to solve the electronic Schrödinger equation.

  3. 3.

    The postulate implies that for each observable there is a least one other non-commuting observable making their joint dispersion-free measurement impossible. This excludes the existence of classical observables.

  4. 4.

    For details on superselection rules see the contribution by Domenico Giulini in this volume.

  5. 5.

    The interpretation of a theory is epistemic if the theory is regarded as dealing with the knowledge of the experimenter on systems he deals with; it is ontic if it tells how the world is. The proper place for epistemic theories is engineering, the objective of ontic theories is to understand the fundamental nature of things.

  6. 6.

    Optical heterodyning, for example, is equivalent to an optimal measurement of the Schrödinger pair (PQ) or, equivalently, of the photon annihilation operator \(Q + iP\).

  7. 7.

    Known for Stiefel-Whitney cohomology, work on Lie groups and the early establishment of numerical mathematics and computer sciences at the ETH in 1949.

  8. 8.

    In 1996, Amann moved from the ETH to the University of Innsbruck in Austria and from theoretical to analytical chemistry. He started a medical research program on breath gas analysis, published some 150 papers on it, founded the International Association for Breath Research, served as its president, and headed the Institut für Atemgasforschung of the Austrian Academy of Science until his untimely death.

References

  • Amann, A. (1986): Observables in W*-algebraic quantum mechanics. Fortschritte der Physik 34, 167–215.

    Google Scholar 

  • Amann, A. (1987): Jauch-Piron states in W*-algebraic quantum mechanics. Journal of Mathematical Physics 28, 2384–2389.

    Google Scholar 

  • Amann, A. (1988): Chirality as a classical observable in algebraic quantum mechanics. In Fractals, Quasicrystals, Chaos, Knots and Algebraic Quantum Mechanics, ed. by A. Amann et al., Dordrecht, Kluwer, pp. 305–325.

    Chapter  Google Scholar 

  • Amann, A. (1993): The gestalt problem in quantum theory: Generation of molecular shape. Synthese 97, 125–156.

    Google Scholar 

  • Amann, A. (1991): Ground states of a spin-boson model. Annals of Physics 208, 414–448.

    Google Scholar 

  • Amann, A. (1997): Quantum mechanics of single molecules. Tatra Mountains Mathematical Publications 10, 159–178.

    Google Scholar 

  • Amann, A., and Müller-Herold, U. (1999): Fragments of an algebraic quantum mechanics program for theoretical chemistry. In On Quanta, Mind, and Matter. Hans Primas in Context, ed. by H. Atmanspacher et al., Dordrecht, Kluwer, pp. 39–51.

    Google Scholar 

  • Amann, A., and Loferer, M.A. (2001): The problem of substance in chemistry – An approach by means of large deviation statistics. Crystal Engineering 4, 101–111.

    Google Scholar 

  • Araki, H., Haag, R., Kastler, D., and Takesaki, M. (1977): Extension of KMS states and chemical potential. Communications in Mathematical Physics 53, 97–134.

    Google Scholar 

  • Araki, H. (1983): Review of Müller-Herold (1982). Mathematical Reviews 83i:82011.

    Google Scholar 

  • Araki, H. (1986): Review of Müller-Herold (1984). Mathematical Reviews 86d:82011.

    Google Scholar 

  • Aspect, A., Grangier, P., and Roger, G. (1982): Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment. A new violation of Bell’s inequalities. Physical Review Letters 49, 91–94.

    Google Scholar 

  • Atmanspacher, H., Primas, H., and Wertenschlag-Birkhäuser, E., eds. (1995): Der Pauli-Jung Dialog und seine Bedeutung für die moderne Wissenschaft, Springer, Berlin.

    Google Scholar 

  • Einstein, A., Podolsky, B., and Rosen, N. (1935): Can quantum-mechanical description of physical reality be considered complete? Physical Review 47, 777–780.

    Google Scholar 

  • Ernst, R.R. (1999): Hans Primas and nuclear magnetic resonance. In On Quanta, Mind, and Matter. Hans Primas in Context, ed. by H. Atmanspacher et al., Kluwer, Dordrecht, pp. 9–38.

    Google Scholar 

  • Feyerabend, P. (1983): Letter to Primas of October 23.

    Google Scholar 

  • Gorini, V., Kossakowski, A., and Sudarshan, E.C.G. (1976): Completely positive dynamical semigroups of N-level systems. Journal of Mathematical Physics 17, 821–825.

    Google Scholar 

  • Haag, R., and Kastler, D. (1964): An algebraic approach to quantum field theory. Journal of Mathematical Physics 5, 848–861.

    Google Scholar 

  • Heitler, W., and London, F. (1927): Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Zeitschrift für Physik 44, 455–472.

    Google Scholar 

  • Hepp, K. (1972): Quantum theory of measurement and macroscopic observables. Helvetica Physica Acta 45, 237–248.

    Google Scholar 

  • Jauch, J.M., and Misra, B. (1961): Supersymmetries and essential observables. Helvetica Physics Acta 34, 699–709.

    Google Scholar 

  • Jörgensen, C.K. (1982): Review of H. Primas, Chemistry, Quantum Mechanics, and Reductionism. Chimia 36, 221–222.

    Google Scholar 

  • Jung, C.G., and Pauli, W. (1952): Naturerklärung und Psyche, Rascher, Zürich. English translation by R.F.C. Hull as The Interpretation of Nature and the Psyche, Routledge, London 1955.

    Google Scholar 

  • Klein, U. (2003): Experiments, Models, Paper tools. Cultures of Organic Chemistry in the Nineteenth Century, Stanford University Press, Stanford.

    Google Scholar 

  • Kolos, W., and Roothaan, C.C. (1960): Accurate electronic wave functions for the H\(_2\) molecule. Reviews of Modern Physics 32, 219–232.

    Google Scholar 

  • Laurikainen, K. (1988): Beyond the Atom: The Philosophical Thought of Wolfgang Pauli. Springer, Berlin.

    Book  MATH  Google Scholar 

  • Layzer, A.J. (1963): Properties of the one-particle Green’s function for non-uniform many-Fermion systems. Physical Review 129, 897–907.

    Google Scholar 

  • Lindblad, G. (1976): On generators of quantum dynamical semigroups. Communications in Mathematical Physics 48, 119–130.

    Google Scholar 

  • Lockhart, C.M., and Misra, B. (1986): Irreversibility and measurement in quantum mechanics. Physica A 136, 47–76.

    Google Scholar 

  • Longuet-Higgins, H.C. (1981): Review of H. Primas, Chemistry, Quantum Mechanics, and Reductionism. Nature 294, 194.

    Google Scholar 

  • Meier, C.A., ed. (1992): Wolfgang Pauli und C.G. Jung. Ein Briefwechsel 1932-1958, Springer, Berlin. English translation by D. Roscoe as Atom and Archetype: The Pauli/Jung Letters 1932-1958, Routledge, London 2001.

    Google Scholar 

  • Migdal, A.B., and Larkin, A.I. (1964): Phenomenological approach to the theory of the nucleus. Nuclear Physics 51, 561–582.

    Google Scholar 

  • Müller-Herold, U. (1975): General mass-action kinetics: positiveness of concentrations as structural property of Horn’s equation. Chemical Physics Letters 33, 467–470.

    Google Scholar 

  • Müller-Herold, U. (1980): Disjointness of \(\beta \)-KMS states with different chemical potential. Letters in Mathematical Physics 4, 45–47.

    Google Scholar 

  • Müller-Herold, U. (1982): Chemisches Potential, Reaktionssysteme und algebraische Quantenchemie. Fortschritte der Physik 30, 1–73.

    Google Scholar 

  • Müller-Herold, U. (1984): Algebraic theory of the chemical potential and the condition of reactive equilibrium. Letters in Mathematical Physics 8, 127–133.

    Google Scholar 

  • Müller-Herold, U.(1995): Vom Sinn im Zufall: Überlegungen zu Wolfgang Paulis Vorlesung an die fremden Leute. In Der Pauli-Jung Dialog und seine Bedeutung für die moderne Wissenschaft, ed. by H. Atmanspacher et al., Springer, Berlin, pp. 159–177.

    Chapter  Google Scholar 

  • Müller-Herold, U. (1999): The Primas effect. In On Quanta, Mind and Matter. Hans Primas in Context, ed. by H. Atmanspacher et al., Kluwer, Dordrecht, pp. 3–8.

    Google Scholar 

  • Müller-Herold, U. (2004): Nachhaltigkeit – auf Altägyptisch? GAIA 13, 290–291.

    Google Scholar 

  • Müller-Herold, U. (2005): Zweifel, Hoffnung und Versagen. Junge Wissenschaftler und das desiderium visionis. Reformatio 54, 49–58.

    Google Scholar 

  • Müller-Herold, U. (2015): Are there Helium-like protonic states of individual water molecules in liquid H\(_2\)O? Preprint, accessible at arXiv:1512.05342

  • Newton, T.D., and Wigner, E.P. (1949): Localized states for elementary systems. Reviews of Modern Physics 21, 400–408.

    Google Scholar 

  • Pfeifer, P. (1980): Chiral Molecules – A Superselection Rule Induced by the Radiation Field. Dissertation ETH Zurich, No. 6551.

    Google Scholar 

  • Preuss, G. (1975): Allgemeine Topologie, Springer, Berlin.

    Book  MATH  Google Scholar 

  • Primas, H. (1964): Was sind Elektronen? Helvetica Chimica Acta 47, 1840–1851.

    Google Scholar 

  • Primas, H. (1968): Zur Theorie grosser Molekeln. I. Revision der Grundlagen der Quantenchemie. Helvetica Physics Acta 51, 1037–1051.

    Google Scholar 

  • Primas, H. (1969): An exactly soluble model for the measurement process in quantum mechanics. Unpublished manuscript.

    Google Scholar 

  • Primas, H. (1981): Chemistry, Quantum Mechanics and Reductionism. Perspectives in Theoretical Chemistry, Springer, Berlin.

    Google Scholar 

  • Primas, H. (1987): Review of Lockhart and Misra (1986). Mathematical Reviews 87k:81006.

    Google Scholar 

  • Primas, H. (1989): Great expectations. Nature 338, 305–306.

    Google Scholar 

  • Primas, H. (1991): Reductionism: Palaver without Precedent. In The Problem of Reductionism in Science, ed. by E. Agazzi, Kluwer, Dordrecht, pp. 161–172.

    Chapter  Google Scholar 

  • Primas, H. (1992): Umdenken in der Naturwissenschaft. GAIA 1, 5–15.

    Google Scholar 

  • Primas, H. (2003): Time-entanglement between mind and matter. Mind and Matter 1, 81–119.

    Google Scholar 

  • Primas, H. (2009): Complementarity of mind and matter. In Recasting Reality. Wolfgang Pauli’s Philosophical Ideas and Contemporary Science, ed. by H. Atmanspacher and H. Primas, Springer, Berlin, pp. 171–209.

    Chapter  Google Scholar 

  • Primas, H., and Müller-Herold, U. (1978): Quantum mechanical system theory. A unifying framework for observations in quantum mechanics. Advances in Chemical Physics 38, 1–107.

    Google Scholar 

  • Primas, H., and Müller-Herold, U. (1984): Elementare Quantenchemie, Teubner, Stuttgart.

    Google Scholar 

  • Raggio, G., and Primas, H. (1984): Remarks on completely positive maps in generalized quantum mechanics. Letters in Mathematical Physics 8, 127–133.

    Google Scholar 

  • Schrödinger, E. (1935): Discussion of probability relations between separated systems. Proceedings. of the Cambridge Philosophical Society 31, 555–563.

    Google Scholar 

  • Stinespring, W.F. (1955): Positive functions of C*-algebras. Proceedings of the American Mathematical Society 6, 211–215.

    Google Scholar 

  • Sutcliffe, B. (1983): Review of H. Primas, Chemistry, Quantum Mechanics, and Reductionism. Journal of Molecuar Structure 89, 189–193.

    Google Scholar 

  • von Meyenn, K., ed. (1979–2005): Wolfgang Paulis wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a., Springer, Berlin.

    Google Scholar 

  • von Neumann, J. (1932): Mathematische Grundlagen der Quantenmechanik, Springer, Berlin. English translation: Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, New Jersey, 1955.

    Google Scholar 

  • Weyl, H. (1927): Quantenmechanik und Gruppentheorie. Zeitschrift für Physik 46, 1–46.

    Google Scholar 

  • Weyl, H. (1928): Gruppentheorie und Quantenmechanik, Hirzel, Leipzig. English translation: The Theory of Groups and Quantum Mechanics, Methuen, London, 1931; reprint: Dover, New York, 1950.

    Google Scholar 

  • Wightman, A.S., and Glance, N. (1989): Superselection rules in molecules. Nuclear Physics B (Proc. Suppl.) 6, 202–206.

    Google Scholar 

Download references

Acknowledgments

I gratefully acknowledge linguistic help from Ursula Lindenberg (UK) and technical support by Werner Angst and Andreas Fischlin (Zurich)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Müller-Herold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Müller-Herold, U. (2016). Theoretical Chemistry and More: Personal Annotations to Hans Primas and His Work. In: Atmanspacher, H., Müller-Herold, U. (eds) From Chemistry to Consciousness. Springer, Cham. https://doi.org/10.1007/978-3-319-43573-2_3

Download citation

Publish with us

Policies and ethics