Skip to main content

Introduction to Bayesian Analysis of Hydrologic Variables

  • Chapter
  • First Online:
Fundamentals of Statistical Hydrology

Abstract

In Sect. 3.4 of Chap. 3, Bayes’ theorem is introduced in a setting of random events in a sample space. It is also shown how the theorem allows for the updating of the current knowledge about the probability of a certain event, in light of new information. In this context, the conditional probability arising from Bayes’ theorem is proportional to the inverse probability given by the theorem of total probability. This chapter explores Bayesian methods in more detail, with the aim of providing the reader with a basic overview of this important branch of statistics, which has extensive application opportunities in the modeling and inference of hydrologic random variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert J (2009) Bayesian computation with R, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Anderson H (1986) Metropolis, Monte Carlo, and The MANIAC. Los Alamos Science. U.S. Government Printing Office, pp 96–108

    Google Scholar 

  • Ang A, Tang W (2007) Probability concepts in engineering, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Bernardo J, Smith A (1994) Bayesian theory. Wiley, Chichester, UK

    Book  Google Scholar 

  • Brooks S (2003) Bayesian computation: a statistical revolution. Philos Trans Roy Soc A Math Phys Eng Sci 361(1813):2681–2697

    Article  Google Scholar 

  • Coles S, Powell E (1996) Bayesian methods in extreme value modelling: a review and new developments. Int Stat Rev 64(1):119

    Article  Google Scholar 

  • Dawdy D, Lettenmaier D (1987) Initiative for risk-based flood design. J Hydraul Eng 113(8):1041–1051

    Article  Google Scholar 

  • Dubler J, Grigg N (1996) Dam safety policy for spillway design floods. J Prof Issues Eng Educ Pract 122(4):163–169

    Article  Google Scholar 

  • Ehlers R (2016) Inferência Bayesiana (Notas de Aula) Ricardo Ehlers. http://www.icmc.usp.br/~ehlers/bayes/. Accessed 1st Apr 2016

  • FEMA—Federal Emergency Management Agency (2004) Federal guidelines for dam safety: selecting and accommodating inflow design floods for Dams. The Interagency Committee of the U.S. Department of Homeland Security, Washington

    Google Scholar 

  • Fernandes W (2009) Método para a estimação de quantis de enchentes extremas com o emprego conjunto de análise bayesiana, de informações não sistemáticas e de distribuições limitadas superiormente. PhD Thesis. Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

    Google Scholar 

  • Fernandes W, Naghettini M, Loschi R (2010) A Bayesian approach for estimating extreme flood probabilities with upper-bounded distribution functions. Stoch Environ Res Risk Assess 24(8):1127–1143

    Article  Google Scholar 

  • Francés F (2001) Incorporating Non-Systematic Information to Flood Frequency Analysis Using the Maximum Likelihood Estimation Method. In: Glade T, Albini P, Francés F (eds) The use of historical data in natural hazard assessments, 1st edn. Springer, Dordrecht, pp 89–99

    Chapter  Google Scholar 

  • Frances F, Salas J, Boes D (1994) Flood frequency analysis with systematic and historical or paleoflood data based on the two-parameter general extreme value models. Water Resour Res 30(6):1653–1664

    Article  Google Scholar 

  • Gamerman D, Lopes H (2006) Markov chain Monte Carlo, 2nd edn. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Gelman A, Carlin J, Stern H, Rubin D (2004) Bayesian data analysis, 2nd edn. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Gilks W, Richardson S, Spiegelhalter D (1996) Markov chain Monte Carlo in practice. Chapman & Hall, London

    Google Scholar 

  • Hastings W (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97–109

    Article  Google Scholar 

  • Hitchcock D (2003) A history of the Metropolis-Hastings algorithm. Am Stat 57(4):254–257

    Article  Google Scholar 

  • Hosking J, Wallis J (1997) Regional frequency analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • ICOLD—International Commission of Large Dams (1987) Dam safety guidelines. Bulletin 59. ICOLD (International Congress of Large Dams), Paris

    Google Scholar 

  • Liu J (2001) Monte Carlo strategies in scientific computing. Springer, New York

    Google Scholar 

  • Lunn D, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Statist Comput 10:325–337

    Article  Google Scholar 

  • Martin A, Quinn K, Park J (2011) MCMCpack: Markov Chain Monte Carlo in R. J Stat Software 42(9)

    Google Scholar 

  • Martins E, Stedinger J (2000) Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resour Res 36(3):737–744

    Article  Google Scholar 

  • McGrayne S (2011) The theory that would not die: how Bayes’ rule cracked the enigma code, hunted down Russian submarines, and emerged triumphant from two centuries of controversy. Yale University Press, New Haven, CT

    Google Scholar 

  • Metropolis N (1987) The beginning of the Monte Carlo Method. Los Alamos Science. U.S. Government Printing Office, Special Issue, 1986-676-104/40022

    Google Scholar 

  • Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Article  Google Scholar 

  • Migon H, Gamerman D (1999) Statistical inference: an integrated approach. Arnold, London

    Google Scholar 

  • Naulet R (2002) Utilisation de l’information des crues historiques pour une meilleure prédétermination du risque d’inondation. Application au bassin de l’Ardèche à Vallon Pont-d’Arc et St-Martin d’Ardèche. PhD Thesis. INRS-ETE

    Google Scholar 

  • Paulino C, Turkman M, Murteira B (2003) Estatística Bayesiana. Fundação Calouste Gulbenkian, Lisboa

    Google Scholar 

  • Renard B, Sun X, Lang M (2013) Bayesian Methods for Non-stationary Extreme Value Analysis. In: AghaKouchak A, Easterling D, Hsu K, Schubert S, Sorooshian S (eds) Extremes in a changing climate: detection, analysis and uncertainty, 1st edn. Springer, Dordrecht, pp 39–95

    Chapter  Google Scholar 

  • Robert C (2007) The Bayesian choice, 2nd edn. Springer, New York

    Google Scholar 

  • Robert C, Casella G (2004) Monte Carlo statistical methods. Springer, New York

    Book  Google Scholar 

  • Silva A, Portela M, Naghettini M, Fernandes W (2015) A Bayesian peaks-over-threshold analysis of floods in the Itajaí-açu River under stationarity and nonstationarity. Stoch Environ Res Risk Assess 1:1–20. doi:10.1007/S00477-015-1184-4

    Google Scholar 

  • Stedinger J, Cohn T (1986) Flood frequency analysis with historical and paleoflood information. Water Resour Res 22(5):785–793

    Article  Google Scholar 

  • Takara K, Tosa K (1999) Storm and flood frequency analysis using PMP/PMF estimates. In: International Symposium on Floods and Droughts. Nanjing, pp 7–17

    Google Scholar 

  • USBR—United States Bureau of Reclamation (2002) Flood hazard analysis, Folsom dam. Central Valley Project. USBR, Denver

    Google Scholar 

  • USBR—United States Bureau of Reclamation (2004) Hydrologic hazard curve estimating procedures. Research Report DSO-04-08. USBR, Denver

    Google Scholar 

  • USNRC—United States Nuclear Regulatory Commission (1977) Design basis floods for nuclear power plants. Regulatory Guide 1.59. USNRC, Washington

    Google Scholar 

  • Viglione A, Merz R, Salinas J, Blöschl G (2013) Flood frequency hydrology: 3. A Bayesian analysis. Water Resour Res 49(2):675–692

    Article  Google Scholar 

  • WMO—World Meteorological Organization (1986) Manual for estimation of probable maximum precipitation. Operational Hydrologic Report No. 1, WMO No. 332, 2nd edn. WMO, Geneva

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilson Fernandes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernandes, W., Silva, A.T. (2017). Introduction to Bayesian Analysis of Hydrologic Variables. In: Naghettini, M. (eds) Fundamentals of Statistical Hydrology. Springer, Cham. https://doi.org/10.1007/978-3-319-43561-9_11

Download citation

Publish with us

Policies and ethics