Accessing Mitochondrial Targets Using NanoCargos

  • Ru Wen
  • Afoma C. Umeano
  • Shanta Dhar
Part of the Fundamental Biomedical Technologies book series (FBMT)


Mitochondria are membrane bound organelles that play essential roles for cell life, including energy production, apoptosis, redox balance, and regulation of calcium. Mitochondrial dysfunction is a hallmark for various diseases ranging from well-known diseases like cancer to rare genetic disorders like Barth’s syndrome. Accordingly, mitochondria have been identified as key targets for therapeutic intervention. Mitochondria targeting strategies using nanocargos are rapidly growing tools for delivery of therapeutic and/or diagnostic payloads to mitochondria. In this chapter, we will highlight specific mitochondrial targets for nanotechnology-based delivery vehicles, NanoCargos, and discuss intracellular uptake mechanisms for NanoCargos, as well as technological methods for investigating mechanism for NanoCargo internalization into mitochondria.


NanoCargo Mitochondria targeting Mitochondrial uptake Technological methods 



Atomic force microscopy


Adenosine nucleotide translocator


Adenosine triphosphate


Cell-penetrating peptide


Carbon dots








Förster Resonance Energy Transfer


Graphene quantum dots


High density lipoprotein


Hydrophobic modified glycol chitosan




Inductively coupled plasma mass spectrometry


Inner mitochondrial membrane


Intermembrane space


In vivo image system


5,5’6,6’-tetrachloro-1,1’,3,3’-tetraethylbenzimidazolcarbocyanine iodide


Layered double hydroxide


Mitochondrial matrix


Mitochondrial permeability transition pore complex


Mitochondrial DNA


Mitochondria targeting sequence


Nuclear DNA


Outer mitochondrial membrane


Oxidative phosphorylation




Quantum dots


Reactive oxygen species


Scanning electron microscopy


Surface-enhanced Raman scattering


Transmission electron microscopy


Triphenyphosphonium cation


Tetramethylrhodamine methyl ester


Tetramethylrhodamine ethyl ester


Voltage dependent anion channel



We are thankful to the Department of Defense for a Prostate Cancer Idea award (W81XWH-12-1-0406); American Heart Association for a National Scientist Award (14SDG18690009); National Heart, Lung, and Blood Institute of National Institutes of Health (NIH) R56 high priority bridge award (Award Number. R56HL121392); National Institute of Neurological Disorders and Stroke of NIH R01NS093314 award, Georgia Research Alliance, and Sylvester Comprehensive Cancer Center for providing financial supports to conduct research in our lab in the area of nanomedicine.


  1. Agnello M, Morici G, Rinaldi AM (2008) A method for measuring mitochondrial mass and activity. Cytotechnology 56(3):145–149PubMedPubMedCentralCrossRefGoogle Scholar
  2. Andersen H, Parhamifar L, Moghimi SM (2014) Uptake and intracellular trafficking of nanocarriers. In: Prokop A, Iwasaki Y, Harada A (eds) Intracellular delivery II: fundamentals and applications, 1st edn. Springer, Dordrecht, pp 117–138Google Scholar
  3. Armstrong JS (2006) Mitochondria: a target for cancer therapy. Br J Pharmacol 147(3):239–248PubMedCrossRefGoogle Scholar
  4. Basarkar A, Singh J (2009) Poly (lactide-co-glycolide)-polymethacrylate nanoparticles for intramuscular delivery of plasmid encoding interleukin-10 to prevent autoimmune diabetes in mice. Pharm Res 26(1):72–81PubMedCrossRefGoogle Scholar
  5. Bernas T, Robinson JP, Asem EK, Rajwa B (2005) Loss of image quality in photobleaching during microscopic imaging of fluorescent probes bound to chromatin. J Biomed Opt 10(6):064015-064015-9Google Scholar
  6. Boddapati SV, D’Souza GGM, Erdogan S, Torchilin VP, Weissig V (2008) Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett 8(8):2559–2563PubMedCrossRefGoogle Scholar
  7. Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25(34):4647–4662PubMedCrossRefGoogle Scholar
  8. Bressan E, Ferroni L, Gardin C, Rigo C, Stocchero M, Vindigni V, Cairns W, Zavan B (2013) Silver nanoparticles and mitochondrial interaction. Int Dent J 2013:312747Google Scholar
  9. Buckman JF, Hernández H, Kress GJ, Votyakova TV, Pal S, Reynolds IJ (2001) MitoTracker labeling in primary neuronal and astrocytic cultures: influence of mitochondrial membrane potential and oxidants. J Neurosci Methods 104(2):165–176PubMedCrossRefGoogle Scholar
  10. Chakraborty A, Jana NR (2015) Design and synthesis of triphenylphosphonium functionalized nanoparticle probe for mitochondria targeting and imaging. J Phys Chem C 119(5):2888–2895Google Scholar
  11. Chatterjee A, Mambo E, Sidransky D (2006) Mitochondrial DNA mutations in human cancer. Oncogene 25(34):4663–4674PubMedCrossRefGoogle Scholar
  12. Chazotte B (2009) Labeling mitochondria with fluorescent dyes for imaging. Dig Cold Spring Harb Protoc. doi: 10.1101/pdb.prot4948.
  13. Chen Y, Dorn GW (2013) PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340(6131):471–475PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chen H-H, Chien C-C, Petibois C, Wang C-L, Chu YS, Lai S-F, Hua T-E, Chen Y-Y, Cai X, Kempson IM (2011) Quantitative analysis of nanoparticle internalization in mammalian cells by high resolution X-ray microscopy. J Nanobiotechnol 9(14). doi: 10.1186/1477-3155-9-14
  15. Chong Y, Ma Y, Shen H, Tu X, Zhou X, Xu J, Dai J, Fan S, Zhang Z (2014) The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials 35(19):5041–5048PubMedCrossRefGoogle Scholar
  16. Clancy B, Cauller L (1998) Reduction of background autofluorescence in brain sections following immersion in sodium borohydride. J Neurosci Methods 83(2):97–102PubMedCrossRefGoogle Scholar
  17. Cooper GM (2000) The cell – a molecular approach, 2nd edn. Sinauer Associates, SunderlandGoogle Scholar
  18. Cossarizza A, Baccaranicontri M, Kalashnikova G, Franceschi C (1993) A New method for the cytofluorometric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem Biophys Res Commun 197(1):40–45PubMedCrossRefGoogle Scholar
  19. Damgé C, Socha M, Ubrich N, Maincent P (2010) Poly (ε‐caprolactone)/eudragit nanoparticles for oral delivery of aspart‐insulin in the treatment of diabetes. J Pharm Sci 99(2):879–889PubMedCrossRefGoogle Scholar
  20. Dausend J, Musyanovych A, Dass M, Walther P, Schrezenmeier H, Landfester K, Mailänder V (2008) Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells. Macromol Biosci 8(12):1135–1143PubMedCrossRefGoogle Scholar
  21. Deshayes S, Morris M, Divita G, Heitz F (2005) Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell Mol Life Sci 62(16):1839–1849PubMedCrossRefGoogle Scholar
  22. Dimauro S, Davidzon G (2005) Mitochondrial DNA and disease. Ann Med 37(3):222–232PubMedCrossRefGoogle Scholar
  23. DiMauro S, Andreu AL, Musumeci O, Bonilla E (2001) Diseases of oxidative phosphorylation due to mtDNA mutations. Semin Neurol 21(3):251–260PubMedCrossRefGoogle Scholar
  24. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902PubMedCrossRefGoogle Scholar
  25. Endo T, Yamano K (2009) Multiple pathways for mitochondrial protein traffic. Biol Chem 390(8):723–730PubMedCrossRefGoogle Scholar
  26. Ernster L, Schatz G (1981) Mitochondria: a historical review. J Cell Biol 91(3):227–255PubMedCentralCrossRefGoogle Scholar
  27. Fadeel B, Ottosson A, Pervaiz S (2008) Big wheel keeps on turning: apoptosome regulation and its role in chemoresistance. Cell Death Differ 15(3):443–452PubMedCrossRefGoogle Scholar
  28. Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E (2012) Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci 322(1–2):254–262PubMedCrossRefGoogle Scholar
  29. Feldhaeusser B, Platt SR, Marrache S, Kolishetti N, Pathak RK, Montgomery DJ, Reno LR, Howerth E, Dhar S (2015) Evaluation of nanoparticle delivered cisplatin in beagles. Nanoscale 7(33):13822–13830PubMedCrossRefGoogle Scholar
  30. Fernando LP, Kandel PK, Yu J, McNeill J, Ackroyd PC, Christensen KA (2010) Mechanism of cellular uptake of highly fluorescent conjugated polymer nanoparticles. Biomacromolecules 11(10):2675–2682PubMedPubMedCentralCrossRefGoogle Scholar
  31. Flemming N, Gallo L, Forbes JM, Ward MS (2015) Tapping into mitochondria to find novel targets for diabetes complications. Curr Drug Targets 17(12):1341–1349Google Scholar
  32. Fontana G, Licciardi M, Mansueto S, Schillaci D, Giammona G (2001) Amoxicillin-loaded polyethylcyanoacrylate nanoparticles: Influence of PEG coating on the particle size, drug release rate and phagocytic uptake. Biomaterials 22(21):2857–2865PubMedCrossRefGoogle Scholar
  33. Friedman JR, Nunnari J (2014) Mitochondrial form and function. Nature 505(7483):335–343PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gilmore K, Wilson M (1999) The use of chloromethyl-X-rosamine (Mitotracker red) to measure loss of mitochondrial membrane potential in apoptotic cells is incompatible with cell fixation. Cytometry 36(4):355–358PubMedCrossRefGoogle Scholar
  35. Greenamyre JT, Hastings TG (2004) Parkinson’s–divergent causes, convergent mechanisms. Science 304(5674):1120–1122PubMedCrossRefGoogle Scholar
  36. Halperin F, Lopez X, Manning R, Kahn CR, Kulkarni RN, Goldfine AB (2012) Insulin augmentation of glucose-stimulated insulin secretion is impaired in insulin-resistant humans. Diabetes 61(2):301–309PubMedPubMedCentralCrossRefGoogle Scholar
  37. Han JY, Kang MJ, Kim KH, Han PL, Kim HS, Ha JY, Son JH (2015) Nitric oxide induction of Parkin translocation in PTEN-induced putative kinase 1 (PINK1) deficiency: functional role of neuronal nitric oxide synthase during mitophagy. J Biol Chem 290(16):10325–10335PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674PubMedCrossRefGoogle Scholar
  39. Harush-Frenkel O, Debotton N, Benita S, Altschuler Y (2007) Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun 353(1):26–32PubMedCrossRefGoogle Scholar
  40. Herce H, Garcia A, Litt J, Kane R, Martin P, Enrique N, Rebolledo A, Milesi V (2009) Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides. Biophys J 97(7):1917–1925PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hill JH, Chen Z, Xu H (2014) Selective propagation of functional mitochondrial DNA during oogenesis restricts the transmission of a deleterious mitochondrial variant. Nat Genet 46(4):389–392PubMedPubMedCentralCrossRefGoogle Scholar
  42. Houtkooper RH, Vaz FM (2008) Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci 65(16):2493–2506PubMedCrossRefGoogle Scholar
  43. Iversen TG, Frerker N, Sandvig K (2012) Uptake of ricinB-quantum dot nanoparticles by a macropinocytosis-like mechanism. J Nanobiotechnology 10(1): 33Google Scholar
  44. Kalathil AA, Kumar A, Banik B, Ruiter TA, Pathak RK, Dhar S (2016) New formulation of old aspirin for better delivery. Chem Commun 52(1):140–143CrossRefGoogle Scholar
  45. Karataş ÖF, Sezgin E, Aydın Ö, Çulha M (2009) Interaction of gold nanoparticles with mitochondria. Colloids Surf B 71(2):315–318CrossRefGoogle Scholar
  46. Kazlauskaite A, Muqit MM (2015) PINK1 and Parkin – mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson's disease. FEBS J 282(2):215–223PubMedCrossRefGoogle Scholar
  47. Keij JF, Bell‐Prince C, Steinkamp JA (2000) Staining of mitochondrial membranes with 10‐nonyl acridine orange MitoFluor Green, and MitoTracker Green is affected by mitochondrial membrane potential altering drugs. Cytometry 39(3):203–210PubMedCrossRefGoogle Scholar
  48. Klein ND, Hurley KR, Feng ZV, Haynes CL (2015) Dark field transmission electron microscopy as a tool for identifying inorganic nanoparticles in biological matrices. Anal Chem 87(8):4356–4362PubMedCrossRefGoogle Scholar
  49. Kroemer G (2006) Mitochondria in cancer. Oncogene 25(34):4630–4632PubMedCrossRefGoogle Scholar
  50. Kwon HJ, Cha M-Y, Kim D, Kim DK, Soh M, Shin K, Hyeon T, Mook-Jung I (2016) Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease. ACS Nano 10(2):2860–2870PubMedCrossRefGoogle Scholar
  51. Li SP-Y, Lau CT-S, Louie M-W, Lam Y-W, Cheng SH, Lo KK-W (2013) Mitochondria-targeting cyclometalated iridium (III)–PEG complexes with tunable photodynamic activity. Biomaterials 34(30):7519–7532PubMedCrossRefGoogle Scholar
  52. Lim JP, Gleeson PA (2011) Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol 89(8):836–843PubMedCrossRefGoogle Scholar
  53. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44(1):362–381PubMedCrossRefGoogle Scholar
  54. Lindgren M, Hällbrink M, Prochiantz A, Langel Ü (2000) Cell-penetrating peptides. Trends Pharmacol Sci 21(3):99–103PubMedCrossRefGoogle Scholar
  55. Madani F, Lindberg S, Langel Ü, Futaki S, Gräslund A (2011) Mechanisms of cellular uptake of cell-penetrating peptides. Dig Biophys J. doi: 10.1155/2011/414729
  56. Marrache S, Dhar S (2012) Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc Natl Acad Sci 109(40):16288–16293PubMedPubMedCentralCrossRefGoogle Scholar
  57. Marrache S, Dhar S (2013) Biodegradable synthetic high-density lipoprotein nanoparticles for atherosclerosis. Proc Natl Acad Sci 110(23):9445–9450PubMedPubMedCentralCrossRefGoogle Scholar
  58. Marrache S, Dhar S (2015) The energy blocker inside the power house: mitochondria targeted delivery of 3-bromopyruvate. Chem Sci 6(3):1832–1845PubMedCrossRefGoogle Scholar
  59. Marrache S, Kumar Pathak R, Darley KL, Choi JH, Zaver D, Kolishetti N, Dhar S (2013) Nanocarriers for tracking and treating diseases. Curr Med Chem 20(28):3500–3514PubMedCrossRefGoogle Scholar
  60. Marrache S, Pathak RK, Dhar S (2014) Detouring of cisplatin to access mitochondrial genome for overcoming resistance. Proc Natl Acad Sci 111(29):10444–10449PubMedPubMedCentralCrossRefGoogle Scholar
  61. Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25(34):4777–4786PubMedPubMedCentralCrossRefGoogle Scholar
  62. Matsuda S, Kitagishi Y, Kobayashi M (2013) Function and characteristics of PINK1 in mitochondria. Dig Oxid Med Cell Longev. doi: 10.1155/2013/601587
  63. Maximo V, Lima J, Soares P, Sobrinho-Simoes M (2009) Mitochondria and cancer. Virchows Arch 454(5):481–495PubMedCrossRefGoogle Scholar
  64. Milane L, Trivedi M, Singh A, Talekar M, Amiji M (2015) Mitochondrial biology, targets, and drug delivery. J Control Release 207:40–58PubMedCrossRefGoogle Scholar
  65. Mizuno Y, Hattori N, Mori H, Suzuki T, Tanaka K (2001) Parkin and Parkinson’s disease. Curr Opin Neurol 14(4):477–482Google Scholar
  66. Mkandawire MM, Lakatos M, Springer A, Clemens A, Appelhans D, Krause-Buchholz U, Pompe W, Rodel G, Mkandawire M (2015) Induction of apoptosis in human cancer cells by targeting mitochondria with gold nanoparticles. Nanoscale 7(24):10634–10640PubMedCrossRefGoogle Scholar
  67. Monici M (2005) Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev 11:227–256PubMedCrossRefGoogle Scholar
  68. Mosiman VL, Patterson BK, Canterero L, Goolsby CL (1997) Reducing cellular autofluorescence in flow cytometry: an in situ method. Cytometry 30(3):151–156PubMedCrossRefGoogle Scholar
  69. Nabi IR, Le PU (2003) Caveolae/raft-dependent endocytosis. J Cell Biol 161(4):673–677PubMedPubMedCentralCrossRefGoogle Scholar
  70. Nam HY, Kwon SM, Chung H, Lee S-Y, Kwon S-H, Jeon H, Kim Y, Park JH, Kim J, Her S, Oh Y-K, Kwon IC, Kim K, Jeong SY (2009) Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J Control Release 135(3):259–267PubMedCrossRefGoogle Scholar
  71. Nicholls DG, Ward MW (2000) Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci 23(4):166–174PubMedCrossRefGoogle Scholar
  72. Oh N, Park J-H (2014) Endocytosis and exocytosis of nanoparticles in mammalian cells. D Int J Nanomed. doi: 10.2147/IJN.S26592
  73. Oh J-M, Choi S-J, Kim S-T, Choy J-H (2006) Cellular uptake mechanism of an inorganic nanovehicle and its drug conjugates: enhanced efficacy due to clathrin-mediated endocytosis. Bioconjug Chem 17(6):1411–1417PubMedCrossRefGoogle Scholar
  74. Pathak RK, Dhar S (2015) A nanoparticle cocktail: temporal release of predefined drug combinations. J Am Chem Soc 137(26):8324–8327PubMedCrossRefGoogle Scholar
  75. Pathak RK, Marrache S, Harn DA, Dhar S (2014) Mito-DCA: a mitochondria targeted molecular scaffold for efficacious delivery of metabolic modulator dichloroacetate. ACS Chem Biol 9(5):1178–1187PubMedPubMedCentralCrossRefGoogle Scholar
  76. Pathak RK, Kolishetti N, Dhar S (2015) Targeted nanoparticles in mitochondrial medicine. WIREs Nanomed Nanobiotechnol 7(3):315–329CrossRefGoogle Scholar
  77. Peckys DB, de Jonge N (2011) Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy. Nano Lett 11(4):1733–1738PubMedPubMedCentralCrossRefGoogle Scholar
  78. Pendergrass W, Wolf N, Poot M (2004) Efficacy of MitoTracker Green™ and CMXRosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry A 61(2):162–169PubMedCrossRefGoogle Scholar
  79. Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50(2):98–115PubMedPubMedCentralCrossRefGoogle Scholar
  80. Petersen CAH, Alikhani N, Behbahani H, Wiehager B, Pavlov PF, Alafuzoff I, Leinonen V, Ito A, Winblad B, Glaser E (2008) The amyloid β-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci 105(35):13145–13150CrossRefGoogle Scholar
  81. Polyak K, Li Y, Zhu H, Lengauer C, Willson JKV, Markowitz SD, Trush MA, Kinzler KW, Vogelstein B (1998) Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet 20(3):291–293PubMedCrossRefGoogle Scholar
  82. Poot M, Pierce RC (1999) Detection of apoptosis and changes in mitochondrial membrane potential with chloromethyl-X-rosamine. Cytometry 36(4):359–360PubMedCrossRefGoogle Scholar
  83. Qaddoumi MG, Gukasyan HJ, Davda J, Labhasetwar V, Kim K-J, Lee V (2003) Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis. Mol Vis 9:559–568PubMedGoogle Scholar
  84. Qu Q, Ma X, Zhao Y (2015) Targeted delivery of doxorubicin to mitochondria using mesoporous silica nanoparticle nanocarriers. Nanoscale 7(40):16677–16686PubMedCrossRefGoogle Scholar
  85. Ratnam DV, Chandraiah G, Meena A, Ramarao P, Ravi Kumar M (2009) The co-encapsulated antioxidant nanoparticles of ellagic acid and coenzyme Q10 ameliorates hyperlipidemia in high fat diet fed rats. J Nanosci Nanotechnol 9(11):6741–6746PubMedCrossRefGoogle Scholar
  86. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775PubMedCrossRefGoogle Scholar
  87. Rin Jean S, Tulumello DV, Wisnovsky SP, Lei EK, Pereira MP, Kelley SO (2014) Molecular vehicles for mitochondrial chemical biology and drug delivery. ACS Chem Biol 9(2):323–333PubMedCrossRefGoogle Scholar
  88. Roberts CK, Sindhu KK (2009) Oxidative stress and metabolic syndrome. Dig Life Sci. doi: 10.1016/j.lfs.2009.02.026
  89. Ross M, Kelso G, Blaikie F, James A, Cocheme H, Filipovska A, Da Ros T, Hurd T, Smith R, Murphy M (2005) Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry 70(2):222–230PubMedGoogle Scholar
  90. Sakhrani NM, Padh H (2013) Organelle targeting: third level of drug targeting. Drug Des Devel Ther 7:585–599PubMedPubMedCentralGoogle Scholar
  91. Santucci R, Sinibaldi F, Polticelli F, Fiorucci L (2014) Role of cardiolipin in mitochondrial diseases and apoptosis. Curr Med Chem 21(23):2702–2714PubMedCrossRefGoogle Scholar
  92. Scatena R (2012) Mitochondria and cancer: a growing role in apoptosis, cancer cell metabolism and dedifferentiation. Adv Exp Med Biol 942:287–308PubMedCrossRefGoogle Scholar
  93. Schnell SA, Staines WA, Wessendorf MW (1999) Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 47(6):719–730PubMedCrossRefGoogle Scholar
  94. Scorrano L, Petronilli V, Colonna R, Di Lisa F, Bernardi P (1999) Chloromethyltetramethylrosamine (Mitotracker OrangeTM) induces the mitochondrial permeability transition and inhibits respiratory complex I implication for the mechanism of cytochrome c release. J Biol Chem 274(35):24657–24663PubMedCrossRefGoogle Scholar
  95. Sharma K (2015) Mitochondrial hormesis and diabetic complications. Diabetes 64(3):663–672PubMedPubMedCentralCrossRefGoogle Scholar
  96. Smith AM, Nie S (2009) Next-generation quantum dots. Nat Biotechnol 27(8):732–733Google Scholar
  97. Smith RA, Porteous CM, Gane AM, Murphy MP (2003) Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci 100(9):5407–5412PubMedPubMedCentralCrossRefGoogle Scholar
  98. Solazzo M, Fantappie O, Lasagna N, Sassoli C, Nosi D, Mazzanti R (2006) P-gp localization in mitochondria and its functional characterization in multiple drug-resistant cell lines. Exp Cell Res 312(20):4070–4078PubMedCrossRefGoogle Scholar
  99. Stojanovski D, Bohnert M, Pfanner N, van der Laan M (2012) Mechanisms of protein sorting in mitochondria. Dig Cold Spring Harb Protoc. doi: 10.1101/cshperspect.a011320
  100. Tatsuta T, Scharwey M, Langer T (2014) Mitochondrial lipid trafficking. Trends Cell Biol 24(1):44–52PubMedCrossRefGoogle Scholar
  101. Ungewickell EJ, Hinrichsen L (2007) Endocytosis: clathrin-mediated membrane budding. Curr Opin Cell Biol 19(4):417–425PubMedCrossRefGoogle Scholar
  102. van Gisbergen MW, Voets AM, Starmans MHW, de Coo IFM, Yadak R, Hoffmann RF, Boutros PC, Smeets HJM, Dubois L, Lambin P (2015) How do changes in the mtDNA and mitochondrial dysfunction influence cancer and cancer therapy? Challenges, opportunities and models. Mutat Res 764:16–30CrossRefGoogle Scholar
  103. Vasquez-Trincado C, Garcia-Carvajal I, Pennanen C, Parra V, Hill JA, Rothermel BA, Lavandero S (2016) Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol 594(3):509–525PubMedCrossRefGoogle Scholar
  104. Verma A, Uzun O, Hu Y, Hu Y, Han H-S, Watson N, Chen S, Irvine DJ, Stellacci F (2008) Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 7(7):588–595PubMedPubMedCentralCrossRefGoogle Scholar
  105. Verschoor ML, Ungard R, Harbottle A, Jakupciak JP, Parr RL, Singh G (2013) Mitochondria and cancer: past, present, and future. Biomed Res Int 2013:612369PubMedPubMedCentralCrossRefGoogle Scholar
  106. Vieira HL, Haouzi D, El Hamel C, Jacotot E, Belzacq AS, Brenner C, Kroemer G (2000) Permeabilization of the mitochondrial inner membrane during apoptosis: impact of the adenine nucleotide translocator. Cell Death Differ 7(12):1146–1154PubMedCrossRefGoogle Scholar
  107. Voigt J, Christensen J, Shastri VP (2014) Differential uptake of nanoparticles by endothelial cells through polyelectrolytes with affinity for caveolae. Proc Natl Acad Sci 111(8):2942–2947PubMedPubMedCentralCrossRefGoogle Scholar
  108. Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12(10):685–698PubMedPubMedCentralCrossRefGoogle Scholar
  109. Walther DM, Rapaport D (2009) Biogenesis of mitochondrial outer membrane proteins. BBA-Mol Cell Res 1793(1):42–51Google Scholar
  110. Wang A, Melosh N (2012) Direct penetration of cell-penetrating peptides across lipid bilayers. Biophys J 102(3):487aGoogle Scholar
  111. Wang Z, Tiruppathi C, Minshall RD, Malik AB (2009) Size and dynamics of caveolae studied using nanoparticles in living endothelial cells. ACS Nano 3(12):4110–4116PubMedPubMedCentralCrossRefGoogle Scholar
  112. Weinberg SE, Chandel NS (2015) Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol 11(1):9–15PubMedPubMedCentralCrossRefGoogle Scholar
  113. Weksler-Zangen S, Raz I, Lenzen S, Jorns A, Ehrenfeld S, Amir G, Oprescu A, Yagil Y, Yagil C, Zangen DH, Kaiser N (2008) Impaired glucose-stimulated insulin secretion is coupled with exocrine pancreatic lesions in the Cohen diabetic rat. Diabetes 57(2):279–287PubMedCrossRefGoogle Scholar
  114. Wen R, Banik B, Pathak RK, Kumar A, Kolishetti N, Dhar S (2016) Nanotechnology inspired tools for mitochondrial dysfunction related diseases. Adv Drug Deliv Rev 99(A): 52–69Google Scholar
  115. White J, Amos W, Fordham M (1987) An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J Cell Biol 105(1):41–48PubMedCrossRefGoogle Scholar
  116. Wickramasekera NT, Das GM (2014) Tumor suppressor p53 and estrogen receptors in nuclear–mitochondrial communication. Mitochondrion 16:26–37PubMedCrossRefGoogle Scholar
  117. Yamada Y, Harashima H (2013) Enhancement in selective mitochondrial association by direct modification of a mitochondrial targeting signal peptide on a liposomal based nanocarrier. Mitochondrion 13(5):526–532PubMedCrossRefGoogle Scholar
  118. Yamada Y, Akita H, Kamiya H, Kogure K, Yamamoto T, Shinohara Y, Yamashita K, Kobayashi H, Kikuchi H, Harashima H (2008) MITO-Porter: A liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. BBA Biomembranes 1778(2):423–432PubMedCrossRefGoogle Scholar
  119. Yamada Y, Fukuda Y, Harashima H (2015a) An analysis of membrane fusion between mitochondrial double membranes and MITO-Porter, mitochondrial fusogenic vesicles. Mitochondrion 24:50–55PubMedCrossRefGoogle Scholar
  120. Yamada Y, Nakamura K, Abe J, Hyodo M, Haga S, Ozaki M, Harashima H (2015b) Mitochondrial delivery of Coenzyme Qvia systemic administration using a MITO-Porter prevents ischemia/reperfusion injury in the mouse liver. J Control Release 213:86–95PubMedCrossRefGoogle Scholar
  121. Yang S-T, Cao L, Luo PG, Lu F, Wang X, Wang H, Meziani MJ, Liu Y, Qi G, Sun Y-P (2009) Carbon dots for optical imaging in vivo. J Am Chem Soc 131(32):11308–11309PubMedPubMedCentralCrossRefGoogle Scholar
  122. Yousif LF, Stewart KM, Kelley SO (2009) Targeting mitochondria with organelle-specific compounds: strategies and applications. ChemBioChem 10(12):1939–1950PubMedCrossRefGoogle Scholar
  123. Zhang E, Zhang C, Su Y, Cheng T, Shi C (2011) Newly developed strategies for multifunctional mitochondria-targeted agents in cancer therapy. Drug Discov Today 16(3–4):140–146PubMedCrossRefGoogle Scholar
  124. Zhang Y, Shen Y, Teng X, Yan M, Bi H, Morais PC (2015) Mitochondria-targeting nanoplatform with fluorescent carbon dots for long time imaging and magnetic field-enhanced cellular uptake. ACS Appl Mater Interfaces 7(19):10201–10212PubMedCrossRefGoogle Scholar
  125. Zhou F, Xing D, Wu B, Wu S, Ou Z, Chen WR (2010) New insights of transmembranal mechanism and subcellular localization of noncovalently modified single-walled carbon nanotubes. Nano Lett 10(5):1677–1681PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, Miller School of MedicineUniversity of MiamiMiamiUSA

Personalised recommendations