Skip to main content

Redox-Responsive Nano-Delivery Systems for Cancer Therapy

  • Chapter
  • First Online:
Intracellular Delivery III

Part of the book series: Fundamental Biomedical Technologies ((FBMT))

  • 921 Accesses

Abstract

Stimuli-responsive nano-carrier systems have been pursued with great interest due to their advantages such as controlled drug release, improved pharmacokinetics and pharmacodynamics, and reduced side effects of the drugs. These nano-carriers have potential to accumulate effectively into the tumor due to “enhanced permeability and retention” (EPR) effect and advancements in surface science further allow active targeting strategies. Development of some such nano-vectors is driven by hallmark characteristics of tumor microenvironment such as hypoxia, acidic pH, and reducing biologically-relevant milieu. This chapter highlights the features of self-regulated internally controlled redox-responsive nano-carrier systems, opportunities presented by them and the promise these “intelligent” delivery vectors offer in improving existing cancer therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP binding casette

cGLP:

Current Good Laboratory Practices

cGMP:

Current Good Manufacturing Practices

CNC:

Cellulose nanocrystals

CPP-SA:

1,3-bis(carboxyphenoxy) propane-sebacic acid

DOPE:

Dioleoyl phosphatidylethanolamine

DTT:

Dithiothreitol

ECM:

Extracellular matrix

EGFR:

Epidermal growth factor receptor

EPR:

Enhanced permeability and retention

FDA:

Food and Drug Administration

GSH:

Glutathione

HIF:

Hypoxia inducible factor

MMP:

Matrix metalloproteinase

PDMAEMA:

Poly(2-(dimethylamino) ethyl methacrylate)

PEG:

Poly(ethylene glycol)

TMBQ:

Trimethyl-locked benzoquinone

VCAM:

Vascular cell adhesion molecule

VEGF:

Vascular endothelial growth factor

References

  • Arunachalam B, Phan UT, Geuze HJ, Cresswell P (2000) Enzymatic reduction of disulfide bonds in lysosomes: characterization of a gamma-interferon-inducible lysosomal thiol reductase (GILT). Proc Natl Acad Sci U S A 97(2):745–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns R, Papandreou I, Denko N (2006) Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Mol Cancer Res 4(2):61–70

    Article  CAS  PubMed  Google Scholar 

  • Carol Ward SPL, Mullen P, Harris AL, Harrison DJ, Claudiu IHK, Supuran T (2013) New strategies for targeting the hypoxic tumour microenvironment in breast cancer. Cancer Treat Rev 39:171–179

    Article  PubMed  Google Scholar 

  • Cheng R, Meng F, Deng C, Klok HA, Zhong Z (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34(14):3647–3657

    Article  CAS  PubMed  Google Scholar 

  • Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62(12):3387–3394

    CAS  PubMed  Google Scholar 

  • Dai J, Lin S, Cheng D, Zou S, Shuai X (2011) Interlayer-crosslinked micelle with partially hydrated core showing reduction and pH dual sensitivity for pinpointed intracellular drug release. Angew Chem Int Ed Engl 50(40):9404–9408

    Article  CAS  PubMed  Google Scholar 

  • Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146

    Article  CAS  PubMed  Google Scholar 

  • Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10(1):9–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 126(3):187–204

    Article  CAS  PubMed  Google Scholar 

  • Giri S, Trewyn BG, Stellmaker MP, Lin VS (2005) Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew Chem Int Ed Engl 44(32):5038–5044

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Li J, Zan M, Luo S, Ge Z, Liu S (2014) Redox-responsive core cross-linked micelles based on cypate and cisplatin prodrugs-conjugated block copolymers for synergistic photothermal–chemotherapy of cancer. Polym Chem 5(11):3707–3718

    Article  CAS  Google Scholar 

  • Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93(4):266–276

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Yuan W, Liu FS, Cheng G, Xu FJ, Ma J (2015a) Redox-responsive polycation-functionalized cotton cellulose nanocrystals for effective cancer treatment. ACS Appl Mater Interfaces 7(16):8942–8951

    Article  CAS  PubMed  Google Scholar 

  • Hu K, Zhou H, Liu Y, Liu Z, Liu J, Tang J, Li J, Zhang J, Sheng W, Zhao Y, Wu Y, Chen C (2015b) Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells. Nanoscale 7(18):8607–8618

    Article  CAS  PubMed  Google Scholar 

  • Huo M, Yuan J, Tao L, Wei Y (2014) Redox-responsive polymers for drug delivery: from molecular design to applications. Polym Chem 5(5):1519–1528

    Article  CAS  Google Scholar 

  • Iyer AK, Singh A, Ganta S, Amiji MM (2013) Role of integrated cancer nanomedicine in overcoming drug resistance. Adv Drug Deliv Rev 65(13–14):1784–1802

    Article  CAS  PubMed  Google Scholar 

  • Kumagai Y, Toi M, Inoue H (2002) Dynamism of tumour vasculature in the early phase of cancer progression: outcomes from oesophageal cancer research. Lancet Oncol 3(10):604–610

    Article  PubMed  Google Scholar 

  • Lai CY, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin VS (2003) A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 125(15):4451–4459

    Article  CAS  PubMed  Google Scholar 

  • Ma N, Li Y, Xu H, Wang Z, Zhang X (2010) Dual redox responsive assemblies formed from diselenide block copolymers. J Am Chem Soc 132(2):442–443

    Article  CAS  PubMed  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392

    CAS  PubMed  Google Scholar 

  • Meng F, Hennink WE, Zhong Z (2009) Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 30(12):2180–2198

    Article  CAS  PubMed  Google Scholar 

  • Ong W, Yang Y, Cruciano AC, McCarley RL (2008) Redox-triggered contents release from liposomes. J Am Chem Soc 130(44):14739–14744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero-Garcia S, Lopez-Gonzalez JS, Baez-Viveros JL, Aguilar-Cazares D, Prado-Garcia H (2011) Tumor cell metabolism: an integral view. Cancer Biol Ther 12(11):939–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao Y, Shi C, Xu G, Guo D, Luo J (2014) Photo and redox dual responsive reversibly cross-linked nanocarrier for efficient tumor-targeted drug delivery. ACS Appl Mater Interfaces 6(13):10381–10392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Xu J, Mattheolabakis G, Amiji M (2015) EGFR-targeted gelatin nanoparticles for systemic administration of gemcitabine in an orthotopic pancreatic cancer model. Nanomedicine 12(3):589–600

    PubMed  Google Scholar 

  • Wang H, Tang L, Tu C, Song Z, Yin Q, Yin L, Zhang Z, Cheng J (2013) Redox-responsive, core-cross-linked micelles capable of on-demand, concurrent drug release and structure disassembly. Biomacromolecules 14(10):3706–3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Yang G, Guo X, Tang Z, Zhong Z, Zhou S (2014a) Redox-responsive polyanhydride micelles for cancer therapy. Biomaterials 35(9):3080–3090

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Zhang S, Liu J, Liu Z, Su L, Wang H, Chang J (2014b) pH- and reduction-responsive polymeric lipid vesicles for enhanced tumor cellular internalization and triggered drug release. ACS Appl Mater Interfaces 6(13):10706–10713

    Article  CAS  PubMed  Google Scholar 

  • Xiao D, Jia HZ, Ma N, Zhuo RX, Zhang XZ (2015) A redox-responsive mesoporous silica nanoparticle capped with amphiphilic peptides by self-assembly for cancer targeting drug delivery. Nanoscale 7(22):10071–10077

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Singh A, Amiji MM (2014) Redox-responsive targeted gelatin nanoparticles for delivery of combination wt-p53 expressing plasmid DNA and gemcitabine in the treatment of pancreatic cancer. BMC Cancer 14:75

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang P, Gai S, Lin J (2012) Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev 41(9):3679–3698

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Zhao Y (2011) Controlled release from cleavable polymerized liposomes upon redox and pH stimulation. Bioconjug Chem 22(4):523–528

    Article  CAS  PubMed  Google Scholar 

  • Zhuang Y, Su Y, Peng Y, Wang D, Deng H, Xi X, Zhu X, Lu Y (2014) Facile fabrication of redox-responsive thiol-containing drug delivery system via RAFT polymerization. Biomacromolecules 15(4):1408–1418

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor M. Amiji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Singh, A., Tran, TH., Amiji, M.M. (2016). Redox-Responsive Nano-Delivery Systems for Cancer Therapy. In: Prokop, A., Weissig, V. (eds) Intracellular Delivery III. Fundamental Biomedical Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-43525-1_10

Download citation

Publish with us

Policies and ethics