Skip to main content

Applications in Stellar Dynamics

  • 737 Accesses

Part of the Astrophysics and Space Science Library book series (ASSL,volume 441)

Abstract

The last chapter of the book is devoted to manifestations of the Lidov-Kozai effect in various problems of stellar dynamics: stellar mergers, “blue stragglers”, statistics of type Ia supernovae, etc. The Lidov-Kozai effect induced by the Galactic tide is considered in the last section of the book.

Keywords

  • Black Hole
  • Neutron Star
  • White Dwarf
  • Globular Cluster
  • Stellar Disk

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

And with a tilt most dangerous, Most frightful, anyway, To other worlds and systems Is turned the Milky Way.

Boris Pasternak, Night (1956)

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-43522-0_9
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-43522-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2

Notes

  1. 1.

    Translated from Russian by I. I. Shevchenko.

  2. 2.

    The massive black hole in the center of our Galaxy is estimated to have mass equal to (3–4) ⋅ 106 Solar masses; it is one of the least massive nuclear black holes known at present in galaxies (Alexander 2005).

References

  • Alexander, T. (2005) “Stellar processes near the massive black hole in the Galactic center.” Phys. Rep., 419, 65–142

    ADS  MathSciNet  CrossRef  Google Scholar 

  • Antonini, F., Murray, N., & Mikkola, S. (2014) “Black hole triple dynamics: a breakdown of the orbit average approximation and implications for gravitational wave detections.” Astrophys. J., 781, 45 (13pp)

    ADS  CrossRef  Google Scholar 

  • Begelman, M. C., Blandford, R. D., & Rees, M. J. (1980) “Massive black hole binaries in active galactic nuclei.” Nature, 287, 307–309

    ADS  CrossRef  Google Scholar 

  • Blaes, O., Lee, M. H., & Socrates, A. (2002) “The Kozai mechanism and the evolution of binary supermassive black holes.” Astrophys. J., 578, 775–786

    ADS  CrossRef  Google Scholar 

  • Brasser, R., Higuchi, A., & Kaib, N. (2010) “Oort cloud formation at various Galactic distances.” Astron. Astrophys., 516, A72 (12 pp)

    ADS  CrossRef  MATH  Google Scholar 

  • Chang, Ph. (2009) “The effectiveness of the Kozai mechanism in the Galactic Centre.” Mon. Not. R. Astron. Soc., 393, 224–228

    ADS  CrossRef  Google Scholar 

  • Duncan, M. J., Quinn, T., & Tremaine, S. (1987) “The formation and extent of the solar system comet cloud.” Astron. J., 94, 1330–1338

    ADS  CrossRef  Google Scholar 

  • Duquennoy, A., & Mayor, M. (1991) “Multiplicity among solar-type stars in the solar neighbourhood. II — Distribution of the orbital elements in an unbiased sample.” Astron. Astrophys., 248, 485–524

    ADS  Google Scholar 

  • Eggleton, P. P., & Kiseleva-Eggleton, L. (2001) “Orbital evolution in binary and triple stars, with an application to SS Lacertae.” Astrophys. J., 562, 1012–1030

    ADS  CrossRef  Google Scholar 

  • Fabrycky, D., & Tremaine, S. (2007) “Shrinking binary and planetary orbits by Kozai cycles with tidal friction.” Astrophys. J., 669, 1298–1315

    ADS  CrossRef  Google Scholar 

  • Ford, E. B., Kozinsky, B., & Rasio, F. A. (2000) “Secular evolution of hierarchical triple star systems.” Astrophys. J., 535, 385–401

    ADS  CrossRef  Google Scholar 

  • Goldman, B., Marsat, S., Henning, T., Clemens, C., & Greiner, J. (2010) “A new benchmark T8-9 brown dwarf and a couple of new mid-T dwarfs from the UKIDSS DR5+ LAS.” Mon. Not. R. Astron. Soc., 405, 1140–1152

    ADS  Google Scholar 

  • Gopakumar, A., Bagchi, M., & Ray, A. (2009) “Ruling out Kozai resonance in highly eccentric galactic binary millisecond pulsar PSR J1903+0327.” Mon. Not. R. Astron. Soc., 399, L123–L127

    ADS  CrossRef  Google Scholar 

  • Gould, A., & Quillen, A. C. (2003) “Sagittarius A companion S0-2: a probe of very high mass star formation.” Astrophys. J., 592, 935–940

    ADS  CrossRef  Google Scholar 

  • Harrington, R. S. (1968) “Dynamical evolution of triple stars.” Astron. J., 73, 190–194

    ADS  CrossRef  Google Scholar 

  • Harrington, R. S. (1969) “The stellar three-body problem.” Celest. Mech., 1, 200–209

    ADS  CrossRef  MATH  Google Scholar 

  • Iben, I., Jr., & Tutukov, A. V. (1984) “Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (\(M\lesssim 9M_{\odot }\)).” Astrophys. J. Suppl., 54, 335–372

    ADS  CrossRef  Google Scholar 

  • Kaib, N. A., Raymond, S. N., & Duncan, M. (2013) “Planetary system disruption by Galactic perturbations to wide binary stars.” Nature, 493, 381–384

    ADS  CrossRef  Google Scholar 

  • Kalas, P., Graham, J. R., & Clampin, M. (2005) “A planetary system as the origin of structure in Fomalhaut’s dust belt.” Nature, 435, 1067–1070

    ADS  CrossRef  Google Scholar 

  • Kiseleva, L. G., Eggleton, P. P., & Mikkola, S. (1998) “Tidal friction in triple stars.” Mon. Not. R. Astron. Soc., 300, 292–392

    ADS  CrossRef  Google Scholar 

  • Kushnir, D., Katz, B., Dong, S., Livne, E., & Fernández, R. (2013) “Head-on collisions of white dwarfs in triple systems could explain Type Ia supernova.” Astrophys. J., 778, L37 (6pp)

    ADS  CrossRef  Google Scholar 

  • Kuzuhara, M., Tamura, M., Ishii, M., Kudo, T., Nishiyama, S., & Kandori, R. (2011) “The widest-separation substellar companion candidate to a binary T Tauri star.” Astron. J., 141, 119 (10pp)

    ADS  CrossRef  Google Scholar 

  • Leigh, N., Knigge, Ch., Sills, A., Perets, H. B., Sarejedini, A., & Glebbeek, E. (2013) “The origins of blue stragglers and binarity in globular clusters.” Mon. Not. R. Astron. Soc., 428, 897–905

    ADS  CrossRef  Google Scholar 

  • Löckmann, U., Baumgardt, H., & Kroupa, P. (2008) “Origin of the S stars in the Galactic center.” Astrophys. J., 683, L151–L154

    ADS  CrossRef  Google Scholar 

  • Lu, J. R., Ghez, A. M., Hornstein, S. D., Morris, M., Matthews, K., Thompson D. J., & Becklin E. E. (2006) “Galactic center youth: orbits and origins of the young stars in the central parsec.” Journal of Physics Conference Series, 54, 279–287

    ADS  CrossRef  Google Scholar 

  • Luhman, K. L., Burgasser, A. J., Labbé, I., Saumon, D., Marley, M. S., Bochanski, J. J., Monson, A. J., & Persson, S. E. (2012) “Confirmation of one of the coldest known brown dwarfs.” Astrophys. J., 744, 135 (8pp)

    ADS  CrossRef  Google Scholar 

  • Marchal, C. (1990) The Three-Body Problem (Elsevier, Amsterdam)

    MATH  Google Scholar 

  • Matese, J. J., & Whitman, P. G. (1992) “A model of the Galactic tidal interaction with the Oort comet cloud.” Celest. Mech. Dyn. Astron., 54, 13–35

    ADS  CrossRef  Google Scholar 

  • Mazeh, T., Goldberg, D., Duquennoy, A., & Mayor, M. (1992) “On the mass-ratio distribution of spectroscopic binaries with solar-type primaries.” Astrophys. J., 401, 265–268

    ADS  CrossRef  Google Scholar 

  • McCrea, W. H. (1964) “Extended main-sequence of some stellar clusters.” Mon. Not. R. Astron. Soc., 128, 147–155

    ADS  CrossRef  Google Scholar 

  • Miller, M. C., & Hamilton, D. P. (2002a) “Four-body effects in globular cluster black hole coalescence.” Astrophys. J., 576, 894–898

    ADS  CrossRef  Google Scholar 

  • Miller, M. C., & Hamilton, D. P. (2002b) “Production of intermediate-mass black holes in globular clusters.” Mon. Not. R. Astron. Soc., 330, 232–240

    ADS  CrossRef  Google Scholar 

  • Morbidelli, A. (2002) Modern Celestial Mechanics (Taylor and Francis, London)

    Google Scholar 

  • Naoz, S., Farr, W. M., Lithwick, Y., Rasio, F. A., & Teyssandier, J. (2011) “Hot Jupiters from secular planet-planet interactions.” Nature, 473, 187–189

    ADS  CrossRef  Google Scholar 

  • Naoz, S., & Silk, J. (2014) “Formation of dark matter tori around supermassive black holes via the eccentric Kozai–Lidov mechanism.” Astrophys. J., 795, 102 (11pp)

    ADS  CrossRef  Google Scholar 

  • Paumard, T., Genzel, R., Martins, F., Nayakshin, S., Beloborodov, A. M., Levin, Y., Trippe, S., Eisenhauer, F., Ott, T., Gillessen, S., Abuter, R., Cuadra, J., Alexander, T., & Sternberg, A. (2006) “The two young star disks in the central parsec of the Galaxy: properties, dynamics, and formation.” Astrophys. J., 643, 1011–1035

    ADS  CrossRef  Google Scholar 

  • Perets, H. B., & Fabrycky, D. C. (2009) “On the triple origin of blue stragglers.” Astrophys. J., 697, 1048–1056

    ADS  CrossRef  Google Scholar 

  • Pinsonneault, M. H., & Stanek, K. Z. (2006) “Binaries like to be twins: implications for doubly degenerate binaries, the type Ia Supernova rate, and other interacting binaries.” Astrophys. J., 639, L67–L70

    ADS  CrossRef  Google Scholar 

  • Prodan, S., Murray, N., & Thompson, T. A. (2013) “On WD–WD mergers in triple systems: the role of Kozai resonance with tidal friction.” ArXiv: 1305.2191 [astro-ph.SR] (8pp)

    Google Scholar 

  • Raghavan, D., McAlister, H. A., Henry, T. J., et al. (2010) “A survey of stellar families: multiplicity of Solar-type stars.” Astrophys. J. Suppl., 190, 1–42

    ADS  CrossRef  Google Scholar 

  • Sandage, A. R. (1953) “The color-magnitude diagram for the globular cluster M 3.” Astron. J., 58, 61–75

    ADS  CrossRef  Google Scholar 

  • Seto, N. (2013) “Highly eccentric Kozai mechanism and gravitational-wave observation for neutron-star binaries.” Phys. Rev. Lett., 111, 061106 (5pp)

    ADS  CrossRef  Google Scholar 

  • Shappee, B. J., & Thompson, T. A. (2013) “The mass-loss-induced eccentric Kozai mechanism: a new channel for the production of close compact object–stellar binaries.” Astrophys. J., 766, 64 (12pp)

    ADS  CrossRef  Google Scholar 

  • Šubr, L., & Karas, V. (2005) “On highly eccentric stellar trajectories interacting with a self-gravitating disc in Sgr A\(^{\star }\).” Astron. Astrophys., 433, 405–413

    ADS  CrossRef  Google Scholar 

  • Šubr, L., Karas, V., & Huré, J.-M. (2004) “Star-disc interactions in a galactic centre and oblateness of the inner stellar cluster.” Mon. Not. R. Astron. Soc., 354, 1177–1188

    ADS  CrossRef  Google Scholar 

  • Thompson, T. A. (2011) “Accelerating compact object mergers in triple systems with the Kozai resonance: a mechanism for “prompt” type Ia supernovae, gamma-ray bursts, and other exotica.” Astrophys. J., 741, 82 (14pp)

    ADS  CrossRef  Google Scholar 

  • Tokovinin, A., Thomas, S., Sterzik, M., & Udry, S. (2006) “Tertiary companions to close spectroscopic binaries.” Astron. Astrophys., 450, 681–693

    ADS  CrossRef  Google Scholar 

  • Veras, D., & Evans, N. W. (2013) “Exoplanets beyond the Solar neighbourhood: Galactic tidal perturbations.” Mon. Not. R. Astron. Soc., 430, 403–415

    ADS  CrossRef  Google Scholar 

  • Veras, D., Crepp, J. R., & Ford, E. B. (2009) “Formation, survival, and detectability of planets beyond 100 AU.” Astrophys. J., 696, 1600–1611

    ADS  CrossRef  Google Scholar 

  • Webbink, R. F. (1984) “Double white dwarfs as progenitors of R Coronae Borealis stars and Type I supernovae.” Astrophys. J., 277, 355–360

    ADS  CrossRef  Google Scholar 

  • Wen, L. (2003) “On the eccentricity distribution of coalescing black hole binaries driven by the Kozai mechanism in globular clusters.” Astrophys. J., 598, 419–430

    ADS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shevchenko, I.I. (2017). Applications in Stellar Dynamics. In: The Lidov-Kozai Effect - Applications in Exoplanet Research and Dynamical Astronomy. Astrophysics and Space Science Library, vol 441. Springer, Cham. https://doi.org/10.1007/978-3-319-43522-0_9

Download citation