Skip to main content

Understanding Irregular Satellites

  • 730 Accesses

Part of the Astrophysics and Space Science Library book series (ASSL,volume 441)

Abstract

Beginning with this Chapter, various observed phenomena due to the Lidov-Kozai effect in astronomical and astrophysical systems are considered. Historically, the first theoretical works on the effect by Lidov (Artif Satell Earth 8:5–45, 1961) were devoted to planetary satellites, both natural and artificial. In the Chapter, the secular orbital behaviour of irregular satellites of giant planets is considered and their orbital distributions are explained.

Keywords

  • Semimajor Axis
  • Giant Planet
  • Regular Satellite
  • Retrograde Orbit
  • Orbital Distribution

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-43522-0_5
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-43522-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3

Notes

  1. 1.

    They are in antiphase, if the inclination i < π∕2, and in phase, if i > π∕2.

  2. 2.

    The term “prograde” designates the planetocentric motion co-directional with the host planet’s heliocentric orbital motion; “retrograde” designates the motion opposite to the prograde one.

  3. 3.

    Note that the given definitions of an irregular satellite apply only to the satellite systems of Jovian planets; otherwise the Moon should be also called irregular.

  4. 4.

    With respect to the ecliptic plane.

References

  • Belbruno, E. A. (2004) Capture Dynamics and Chaotic Motions in Celestial Mechanics (Princeton University Press, Princeton)

    MATH  Google Scholar 

  • Burns, J. A. (1986) “Some background on satellites.” In: Satellites, ed. by Burns, J. A., & Matthews, M. S. (Univ. of Arizona Press, Tucson) pp. 1–38

    Google Scholar 

  • Carruba, V., Burns, J. A., Nicholson, P. D., & Gladman, B. J. (2002) “On the inclination distribution of the Jovian irregular satellites.” Icarus, 158, 434–449

    ADS  CrossRef  Google Scholar 

  • Colombo, G., & Franklin, F. A. (1971) “On the formation of the outer satellite groups of Jupiter.” Icarus, 15, 186–189

    ADS  CrossRef  Google Scholar 

  • Emelyanov, N. V., & Vashkovyak, M. A. (2012) “Evolution of orbits and encounters of distant planetary satellites. Study tools and examples.” Sol. Sys. Res., 46, 423–435

    ADS  CrossRef  Google Scholar 

  • Ferraz-Mello, S. (2007) Canonical Perturbation Theories. Degenerate Systems and Resonance (Springer, New York)

    CrossRef  MATH  Google Scholar 

  • Gladman, B., Kavelaars, J. J., Holman, M., Nicholson, P. D., Burns, J. A., Hergenrother, C., Petit, J.-M., Marsden, B. G., Jacobson, R., Gray, W., & Grav, T. (2001) “Orbital clustering for twelve newly discovered Saturnian satellites: Evidence for collisional families.” Nature, 412, 163–166

    ADS  CrossRef  Google Scholar 

  • Goldreich, P., Murray, N., Longaretti, P. Y., & Banfield, D. (1989) “Neptune’s story.” Science, 245, 500–504

    ADS  CrossRef  Google Scholar 

  • Hamilton, D. P., & Burns, J. A. (1992) “Orbital stability zones about asteroids. II. The destabilizing effects of eccentric orbits and of solar radiation.” Icarus, 96, 43–64

    ADS  CrossRef  Google Scholar 

  • Heppenheimer, T. A., & Porco, C. C. (1977) “New contributions to the problem of capture.” Icarus, 30, 385–401

    ADS  CrossRef  Google Scholar 

  • Kholshevnikov, K. V. (1997) “D’Alembertian functions in celestial mechanics.” Astron. Rep., 41, 135–142

    ADS  Google Scholar 

  • Kholshevnikov, K. V. (2001) “The Hamiltonian in the planetary or satellite problem as a D’Alembertian function.” Astron. Rep., 41, 135–142, 45, 577–579

    Google Scholar 

  • Lidov, M. L. (1961) “Evolution of artificial planetary satellites under the action of gravitational perturbations due to external bodies.” Iskusstviennye Sputniki Zemli (Artificial Satellites of the Earth), 8, 5–45 (in Russian)

    Google Scholar 

  • Lidov, M. L. (1963b) “On the approximate analysis of the evolution of orbits of artificial satellites.” In: Problems of the Motion of Artificial Celestial Bodies. (Reports at the Conference on general and applied problems of theoretical astronomy. Moscow, November 20–25, 1961.) (Publishers of the USSR Academy of Sciences, Moscow) pp. 119–134 (in Russian) [Available at NASA ADS: 1963pmac.book..119L, including incomplete English translation.]

    Google Scholar 

  • Morbidelli, A. (2002) Modern Celestial Mechanics (Taylor and Francis, London)

    Google Scholar 

  • Murray, C. D., & Dermott, S. F. (1999) Solar System Dynamics (Cambridge Univ. Press, Cambridge)

    MATH  Google Scholar 

  • Nesvorný, D., Alvarellos, J. L. A., Dones, L., & Levison, H. F. (2003) “Orbital and collisional evolution of the irregular satellites.” Astron. J., 126, 398–429

    ADS  CrossRef  Google Scholar 

  • Pollack, J. B., Burns, J. A., & Tauber, M. E. (1979) “Gas drag in primordial circumplanetary envelopes: A mechanism for satellite capture.” Icarus, 37, 587–611

    ADS  CrossRef  Google Scholar 

  • Pollack, J. B., Lunine, J. I., & Tittemore, W. C. (1991) “Origin of the Uranian satellites.” In: Uranus, ed. by Bergstrahl, J. T., Miner, E. D., & Matthews, M. S. (Univ. Arizona Press, Tucson) pp. 469–512

    Google Scholar 

  • Saha, P., & Tremaine, S. (1993) “The orbits of the retrograde jovian satellites.” Icarus, 106, 549–562

    ADS  CrossRef  Google Scholar 

  • Stevenson, D. J., Harris, A. W., & Lunine, J. I. (1986) “Origins of satellites.” In: Satellites, ed. by Burns, J. A., & Matthews, M. S. (Univ. Arizona Press, Tucson) 39–88

    Google Scholar 

  • Tremaine, S., Touma, J., & Namouni, F. (2009) “Satellite dynamics on the Laplace surface.” Astron. J., 137, 3706–3717

    ADS  CrossRef  Google Scholar 

  • Vashkovyak, M. A. (1999) “Evolution of the orbits of distant satellites of Uranus.” Astron. Lett., 25, 476–481

    ADS  Google Scholar 

  • Vashkovyak, M. A. (2001) “Orbital evolution of Saturn’s new outer satellites and their classification.” Astron. Lett., 27, 455–463

    ADS  CrossRef  Google Scholar 

  • Vashkovyak, M. A. (2003) “Orbital evolution of new distant Neptunian satellites and ω-librators in the satellite systems of Saturn and Jupiter.” Astron. Lett., 29, 695–703

    ADS  CrossRef  Google Scholar 

  • Vashkovyak, M. A. (2005) “Particular solutions of the singly averaged Hill problem.” Astron. Lett., 31, 487–493

    ADS  CrossRef  Google Scholar 

  • Vashkovyak, M. A., & Teslenko, N. M. (2008a) “Evolution characteristics of Jupiter’s outer satellites.” Sol. Sys. Res., 42, 281–295 [Erratum: Sol. Sys. Res., 43, 463]

    Google Scholar 

  • Vashkovyak, M. A., & Teslenko, N. M. (2008b) “Evolutionary characteristics of the orbits of outer Saturnian, Uranian, and Neptunian satellites.” Solar Sys. Res., 42, 488–504 [Erratum: Sol. Sys. Res., 43, 464]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shevchenko, I.I. (2017). Understanding Irregular Satellites. In: The Lidov-Kozai Effect - Applications in Exoplanet Research and Dynamical Astronomy. Astrophysics and Space Science Library, vol 441. Springer, Cham. https://doi.org/10.1007/978-3-319-43522-0_5

Download citation