Skip to main content

Random Forests Hydrodynamic Flow Classification in a Vertical Slot Fishway Using a Bioinspired Artificial Lateral Line Probe

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2016)

Abstract

Ecohydraulic studies rely on observations of fish behavior with hydrodynamic measurements. Most commonly, observed fish locations are compared with maps of the bulk flow velocity and depth. Fish use their lateral line to sense hydrodynamic interactions mediated by body-oriented spatial gradients. To improve studies on fish an artificial lateral line probe (LLP) is tested on its ability to classify either the “slot” or “pool” regions within 28 basins of a vertical slot fishway. Random forests classification is applied using four models based on high-frequency (200 Hz) recordings using 11 collocated pressure sensors and two triaxial accelerometers. It was found that the assigned classification task proved to be reliable, with 100 % correct classification of all four models, across all 28 basins. Preliminary results from the first field study of this new sensing platform show the LLP-random forests workflow can provide robust, highly accurate classification of turbulent flows experienced by fish innatura.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yorke, T.H., Oberg, K.A.: Measuring river velocity and discharge with acoustic Doppler profilers. Flow Meas. Instrum. 13, 191–195 (2002)

    Article  Google Scholar 

  2. Kalmijn, A.J.: Hydrodynamic and acoustic field detection. In: Atema, J., Fay, R.R., Popper, A.N., Tavolga, W.N. (eds.) Sensory Biology of Aquatic Animals, pp. 83–130. Springer, New York (1988)

    Chapter  Google Scholar 

  3. Tuhtan, J.A., Fuentes-Pérez, J.F., Strokina, N., Toming, G., Musall, M., Noack, M., Kämäräinen, J.K., Kruusmaa, M.: Design and application of a fish-shaped lateral line probe for flow measurement. Rev. Sci. Instrum. 87(4), 45110 (2016)

    Article  Google Scholar 

  4. Dijkgraaf, S.: The functioning and significance of the lateral-line organs. Biol. Rev. 38(1), 51–105 (1963)

    Article  Google Scholar 

  5. Nestler, J. M., Pickens, J. L., Evans, J., Haskins, R. W.: Multiple sensor fish surrogate for acoustic and hydraulic data collection. US5517465 A (1996)

    Google Scholar 

  6. Deng, Z.D., Lu, J., Myjak, M.J., Martinez, J.J., Tian, C., Morris, S.J., Carlson, T.J., Zhou, D., Hou, H.: Design and implementation of a new autonomous sensor fish to support advanced hydropower development. Rev. Sci. Instrum. 85(11), 115001 (2014)

    Article  Google Scholar 

  7. Yang, Y., Chen, J., Engel, J., Pandya, S., Chen, N., Tucker, C., Coombs, S., Jones, D.L., Liu, C.: Distant touch hydrodynamic imaging with an artificial lateral line. Proc. Natl. Acad. Sci. 103(50), 18891–18895 (2006)

    Article  Google Scholar 

  8. Klein, A., Bleckmann, H.: Determination of object position, vortex shed-ding frequency and flow velocity using artificial lateral line canals. Beilstein J. Nanotechnol. 2, 276–283 (2011)

    Article  Google Scholar 

  9. Wang, W., Xie, G.: Online high-precision probabilistic localization of robotic fish using visual and inertial cues. IEEE Trans. Ind. Electron. 62(2), 1113–1124 (2015)

    Article  Google Scholar 

  10. Shizhe, T.: Underwater artificial lateral line flow sensors. Microsyst. Technol. 20, 2123–2136 (2014)

    Article  Google Scholar 

  11. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  12. Cutler, R.D., Edwards, T.C., Beard, K.H., Cutler, K.T., Gibson, H.J., Lawler, J.J.: Random forests for classification in ecology. Ecology 88, 2783–2792 (2007)

    Article  Google Scholar 

  13. Fukuda, S., De Baets, B., Waegeman, W., Verwaeren, J., Mouton, A.M.: Habitat prediction and knowledge extraction for spawning European grayling (Thymallus thymallus L.) using a broad range of species distribution models. Environ. Model Softw. 47, 1–6 (2013)

    Article  Google Scholar 

  14. Strokina, N., Kämäräinen, J.K., Tuhtan, J.A., Fuentes-Pérez, J.F., Kruusmaa, M.: Joint estimation of bulk flow velocity and angle using a lateral line probe. IEEE Trans. Instrum. Meas. 65(3), 601–613 (2016)

    Article  Google Scholar 

  15. Fuentes-Pérez, J.F., Tuhtan, J.A., Carbonell-Baeza, R., Musall, M., Toming, G., Muhammad, N., Kruusmaa, M.: Current velocity estimation using a lateral line probe. Ecol. Eng. 85, 296–300 (2015)

    Article  Google Scholar 

  16. Tuhtan, J.A., Strokina, N., Fuentes-Pérez, J.F., Muhammad, N., Musall, M., Noack, M., Toming, G., Kämäräinen, J.-K., Kruusmaa, M., Schletterer, M.: Ecohydraulic flow sensing and classification using a lateral line probe. In: Proceedings of 11th International Symposium on Ecohydraulics, Melbourne, Australia (2016)

    Google Scholar 

  17. Bundesministerium für Land- und Forstwirt-schaft, Umwelt und Wasserwirtschaft (Hrsg.): Leitfaden zum Bau von Fischaufstiegshilfen. Wien (2012)

    Google Scholar 

  18. Liaw, A., Wiener, M.: Classification and regression by random forest. R News 2(3), 18–22 (2002)

    Google Scholar 

  19. R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2015). http://www.R-project.org/

  20. Nash, J.E., Sutcliffe, J.V.: River flow forecasting through conceptual models. part I: a discussion of principles. J. Hydrol. 10, 282–290 (1970)

    Article  Google Scholar 

  21. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  22. Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.C., Müller, M.: pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinform. 12, 77 (2011)

    Article  Google Scholar 

  23. Cea, L., Pena, L., Puertas, J., Vázquez-Cendón, M.E., Peña, E.: Application of several depth-averaged turbulence models to simulate flow in vertical slot fishways. J. Hydraul. Eng. 133, 160–172 (2007)

    Article  Google Scholar 

  24. Fukuda, S., Spreer, W., Yasunaga, E., Yuge, K., Sardsud, V., Muller, J.: Random Forests modelling for the estimation of mango (Mangifera indica L. cv. Chok Anan) fruit yields under different irrigation regimes. Agric. Water Manage. 116, 142–150 (2013)

    Article  Google Scholar 

  25. Fukuda, S., Yasunaga, E., Nagle, M., Yuge, K., Sardsud, V., Spreer, W., Muller, J.: Modelling the relationship between peel colour and the quality of fresh mango fruit using random forests. J. Food Eng. 131, 7–17 (2014)

    Article  Google Scholar 

  26. Tuhtan, A., Strokina, N., Toming, G., Muhammad, N., Kruusmaa, M., Kämäräinen J.: Hydrodynamic classification of natural flows using an artificial lateral line and frequency domain feature. In: 36th IAHR World Congress (2015)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Grant-in-aid for Young Scientists A (25712026) and Grant-in-aid for Challenging Exploratory Research (26660190) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The research leading to these results has received funding from BONUS, the joint Baltic research and development programme, co‐financed by the European Union’s Seventh Framework Programme (2007–2013) under the BONUS Implementation Agreement. National funding for this work has been provided by the German Federal Ministry for Education and Research (BMBF FKZ:03F0687A) and the Estonian Environmental Investment Centre (KIK P.7254 C.3255). The work has also been partly financed by the EU FP7 project ROBOCADEMY (No. 608096) and the TIWAG research project “Robofish”, Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Fukuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Fukuda, S., Tuhtan, J.A., Fuentes-Perez, J.F., Schletterer, M., Kruusmaa, M. (2016). Random Forests Hydrodynamic Flow Classification in a Vertical Slot Fishway Using a Bioinspired Artificial Lateral Line Probe. In: Kubota, N., Kiguchi, K., Liu, H., Obo, T. (eds) Intelligent Robotics and Applications. ICIRA 2016. Lecture Notes in Computer Science(), vol 9835. Springer, Cham. https://doi.org/10.1007/978-3-319-43518-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43518-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43517-6

  • Online ISBN: 978-3-319-43518-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics