Skip to main content

Matrix Biology of the Salivary Gland: A Guide for Tissue Engineering

  • Chapter
  • First Online:
Salivary Gland Development and Regeneration

Abstract

Salivary glands produce saliva needed to carry out daily functions such as initiation of food digestion, lubrication of the oral cavity, and prevention of oral diseases. Xerostomia, or dry mouth due to hyposalivation, can occur in individuals with Sjögren’s syndrome or in patients who receive radiation therapy to treat head and neck cancer. This chapter will focus on the bioengineering approaches in salivary gland regeneration that seek to restore salivary function in patients suffering from xerostomia. A brief description of salivary gland function, structure, and development will be provided first as this information is vital to inform any salivary gland tissue engineering efforts. Additionally, examples of salivary gland-derived stem/progenitor cells that are used in various salivary gland regeneration models will be introduced along with a brief description of each utility as source material for tissue engineering. Lastly, we will review matrices for three-dimensional cell culture, including decellularized native extracellular matrix scaffolds, Matrigel®, and scaffolds containing biologically derived natural polymers, polysaccharides, and biologically active protein fragments. Together, these elements will provide a current view of the state-of-the-art clinical approaches to relieve xerostomia using three-dimensional culture techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Cancer Society. Cancer Facts & Figures. 2016.

    Google Scholar 

  2. Sullivan CA, Haddad RI, Tishler RB, et al. Chemoradiation-induced cell loss in human submandibular glands. Laryngoscope. 2005;115:958–64. doi:10.1097/01.MLG.0000163340.90211.87.

    Article  PubMed  Google Scholar 

  3. AlDuhaiby EZ, Breen S, Bissonnette J-P, et al. A national survey of the availability of intensity-modulated radiation therapy and stereotactic radiosurgery in Canada. Radiat Oncol. 2012;7:18. doi:10.1186/1748-717X-7-18.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wijers OB, Levendag PC, Braaksma MMJ, et al. Patients with head and neck cancer cured by radiation therapy: a survey of the dry mouth syndrome in long-term survivors. Head Neck. 2002;24:737–47. doi:10.1002/hed.10129.

    Article  PubMed  Google Scholar 

  5. Dirix P, Nuyts S, Van den Bogaert W. Radiation-induced xerostomia in patients with head and neck cancer: a literature review. Cancer. 2006;107:2525–34. doi:10.1002/cncr.22302.

    Article  PubMed  Google Scholar 

  6. Toljanic JA, Heshmati RH, Bedard J-F. Dental follow-up compliance in a population of irradiated head and neck cancer patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;93:35–8. doi:http://dx.doi.org/10.1067/moe.2002.116599.

    Article  PubMed  Google Scholar 

  7. Ellis H. Anatomy of the salivary glands. Surg. 2012;30:569–72. doi:10.1016/j.mpsur.2012.09.008.

    Google Scholar 

  8. Marsh PD, Do T, Beighton D, DA D. Influence of saliva on the oral microbiota. Periodontol 2000. 2016;70:80–92. doi:10.1111/prd.12098.

    Article  PubMed  Google Scholar 

  9. Emmelin N, Garrett JR, Ohlin P. Neural control of salivary myoepithelial cells. J Physiol. 1968;196:381–396.1.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Emmelin N, Gjörstrup P. On the function of myoepithelial cells in salivary glands. J Physiol. 1973;230:185–98.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chitturi RT, Veeravarmal V, Nirmal RM, Reddy BVR. Myoepithelial cells (MEC) of the salivary glands in health and tumours. J Clin Diagn Res. 2015;9:ZE14–8. doi:10.7860/JCDR/2015/11372.5707.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Diaz Silva G. Physiology of the salivary glands. Odontol Chil. 1987;35:130–6.

    PubMed  Google Scholar 

  13. Bornens M. Organelle positioning and cell polarity. Nat Rev Mol Cell Biol. 2008;9:874–86. doi:10.1038/nrm2524.

    Article  PubMed  Google Scholar 

  14. Shin K, Fogg VC, Margolis B. Tight junctions and cell polarity. Annu Rev Cell Dev Biol. 2006;22:207–35. doi:10.1146/annurev.cellbio.22.010305.104219.

    Article  PubMed  Google Scholar 

  15. Dbouk HA, Mroue RM, El-Sabban ME, Talhouk RS. Connexins: a myriad of functions extending beyond assembly of gap junction channels. Cell Commun Signal. 2009;7:1–17. doi:10.1186/1478-811X-7-4.

    Article  Google Scholar 

  16. Shimono M, Muramatsu T, Hashimoto S, Inoue T. Connexin expression in the salivary glands. Eur J Morphol. 1996;34:197–202. doi:10.1076/ejom.34.3.197.13027.

    Article  PubMed  Google Scholar 

  17. Lourenço SV, Lima DMC, Uyekita SH, et al. Expression of beta-1 integrin in human developing salivary glands and its parallel relation with maturation markers: in situ hybridisation and immunofluorescence study. Arch Oral Biol. 2007;52:1064–71. doi:10.1016/j.archoralbio.2007.05.002.

    Article  PubMed  Google Scholar 

  18. Lourenço SV, Nico MMS, Kapas S. Integrin expression in developing human salivary glands. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100:193. doi:10.1016/j.tripleo.2005.05.036.

    Article  Google Scholar 

  19. Segawa A, Takemura H, Yamashina S. Calcium signaling in tissue: diversity and domain-specific integration of individual cell response in salivary glands. J Cell Sci. 2002;115:1869–76.

    PubMed  Google Scholar 

  20. Meda P, Pepper MS, Traub O, et al. Differential expression of gap junction connexins in endocrine and exocrine glands. Endocrinology. 1993;133:2371–8. doi:10.1210/endo.133.5.8404689.

    PubMed  Google Scholar 

  21. Castle JD. Protein secretion by rat parotid acinar cells: pathways and regulation. Ann N Y Acad Sci. 1998;842:115–24. doi:10.1111/j.1749-6632.1998.tb09639.x.

    Article  PubMed  Google Scholar 

  22. Gorr S-U, Venkatesh SG, Darling DS. Parotid secretory granules: crossroads of secretory pathways and protein storage. J Dent Res. 2005;84:500–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ishikawa Y, Cho G, Yuan Z, et al. Water channels and zymogen granules in salivary glands. J Pharmacol Sci. 2006;100:495–512. doi:10.1254/jphs.CRJ06007X.

    Article  PubMed  Google Scholar 

  24. Nagler R, Marmary Y, Fox PC, et al. Irradiation-induced damage to the salivary glands: the role of redox-active iron and copper. Radiat Res. 1997;147:468–76. doi:10.2307/3579504.

    Article  PubMed  Google Scholar 

  25. Nagler RM, Laufer D. Protection against irradiation-induced damage to salivary glands by adrenergic agonist administration. Int J Radiat Oncol. 1998;40:477–81. doi:10.1016/S0360-3016(97)00574-9.

    Article  Google Scholar 

  26. Grundmann O, Mitchell GC, Limesand KH. Sensitivity of salivary glands to radiation: from animal models to therapies. J Dent Res. 2009;88:894–903. doi:10.1177/0022034509343143.

    Article  PubMed  PubMed Central  Google Scholar 

  27. LeBleu VS, Macdonald B, Kalluri R. Structure and function of basement membranes. Exp Biol Med (Maywood). 2007;232:1121–9. doi:10.3181/0703-MR-72.

    Article  Google Scholar 

  28. Yurchenco PD, Amenta PS, Patton BL. Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol. 2004;22:521–38. doi:10.1016/j.matbio.2003.10.006.

    Article  PubMed  Google Scholar 

  29. Skalova A, Leivo I. Basement membrane proteins in salivary gland tumours. Virchows Arch A. 1992;420:425–31. doi:10.1007/BF01600514.

    Article  Google Scholar 

  30. Farach-Carson MC, Warren CR, Harrington DA, Carson DD. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders. Matrix Biol. 2014;34:64–79. doi:10.1016/j.matbio.2013.08.004.

    Article  PubMed  Google Scholar 

  31. Warren CR, Kassir E, Spurlin J, et al. Evolution of the perlecan/HSPG2 gene and its activation in regenerating nematostella vectensis. PLoS One. 2015;10:e0124578. doi:10.1371/journal.pone.0124578.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Proctor GB, Carpenter GH. Regulation of salivary gland function by autonomic nerves. Auton Neurosci. 2007;133:3–18. doi:10.1016/j.autneu.2006.10.006.

    Article  PubMed  Google Scholar 

  33. Humphrey SP, Williamson RT. A review of saliva: normal composition, flow, and function. J Prosthet Dent. 2001;85:162–9. doi:10.1067/mpr.2001.113778.

    Article  PubMed  Google Scholar 

  34. Borghese E. The development in vitro of the submandibular gland and sublingual glands of the mus musculus. J Anat. 1950;84:287–302.

    PubMed  PubMed Central  Google Scholar 

  35. Borghese E. Explanation experiments on the influence of connective tissue capsule on the development of the epithelial part of the submandibular gland of Mus musculus. J Anat. 1950;84:303–18.

    PubMed  PubMed Central  Google Scholar 

  36. Tucker AS. Salivary gland development. Semin Cell Dev Biol. 2007;18:237–44. doi:10.1016/j.semcdb.2007.01.006.

    Article  PubMed  Google Scholar 

  37. Patel VN, Rebustini IT, Hoffman MP. Salivary gland branching morphogenesis. Differentiation. 2006;74:349–64. doi:10.1111/j.1432-0436.2006.00088.x.

    Article  PubMed  Google Scholar 

  38. Ferreira JN, Hoffman MP. Interactions between developing nerves and salivary glands. Organogenesis. 2013;9:199–205.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Werner Kahle M, Michael Frotscher M. Color atlas of human anatomy. Volume 3, nervous system and sensory organs. Stuttgart/New York: Thieme; 2003.

    Google Scholar 

  40. Henriksson R, Carlsöö B, Danielsson Å, et al. Developmental influences of the sympathetic nervous system on rat parotid gland. J Neurol Sci. 1985;71:183–91. doi:10.1016/0022-510X(85)90058-9.

    Article  PubMed  Google Scholar 

  41. Coughlin MD. Early development of parasympathetic nerves in the mouse submandibular gland. Dev Biol. 1975;43:123–39. doi:10.1016/0012-1606(75)90136-0.

    Article  PubMed  Google Scholar 

  42. Coughlin MD. Target organ stimulation of parasympathetic nerve growth in the developing mouse submandibular gland. Dev Biol. 1975;43:140–58. doi:10.1016/0012-1606(75)90137-2.

    Article  PubMed  Google Scholar 

  43. Knox SM, Lombaert IM, Reed X, et al. Parasympathetic innervation maintains epithelial progenitor cells during salivary organogenesis. Science. 2010;329:1645–7. doi:10.1126/science.1192046.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Harunaga JS, Doyle AD, Yamada KM. Local and global dynamics of the basement membrane during branching morphogenesis require protease activity and actomyosin contractility. Dev Biol. 2014;394:197–205. doi:10.1016/j.ydbio.2014.08.014.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Koyama N, Hayashi T, Kashimata M. Regulation of branching morphogenesis in fetal mouse submandibular gland by signaling pathways activated by growth factors and α6 integrin. J Oral Biosci. 2011;53:298–303. doi:http://dx.doi.org/10.1016/S1349-0079(11)80022-8.

    Article  Google Scholar 

  46. Sakai T, Larsen M, Yamada KM. Fibronectin requirement in branching morphogenesis. Nature. 2003;423:876–81.

    Article  PubMed  Google Scholar 

  47. Kallman F, Grobstein C. Source of collagen at epitheliomesenchymal interfaces during inductive interaction. Dev Biol. 1965;11:169–83. doi:10.1016/0012-1606(65)90055-2.

    Article  PubMed  Google Scholar 

  48. Bernfield MR. Collagen synthesis during epitheliomesenchymal interactions. Dev Biol. 1970;22:213–31. doi:10.1016/0012-1606(70)90151-X.

    Article  PubMed  Google Scholar 

  49. Kadoya Y, Kadoya K, Durbeej M, et al. Antibodies against domain E3 of laminin-1 and integrin alpha 6 subunit perturb branching epithelial morphogenesis of submandibular gland, but by different modes. J Cell Biol. 1995;129:521–34. doi:10.1083/jcb.129.2.521.

    Article  PubMed  Google Scholar 

  50. Durbeej M, Talts JF, Henry MD, et al. Dystroglycan binding to laminin alpha1LG4 module influences epithelial morphogenesis of salivary gland and lung in vitro. Differentiation. 2001;69:121–34. doi:10.1046/j.1432-0436.2001.690206.x.

    Article  PubMed  Google Scholar 

  51. Hardman P, Spooner BS. Localization of extracellular matrix components in developing mouse salivary glands by confocal microscopy. Anat Rec. 1992;234:452–9. doi:10.1002/ar.1092340315.

    Article  PubMed  Google Scholar 

  52. Kumagai M, Sato I. Immunolocalization of fibronectin and collagen types I and III in human fetal parotid and submandibular glands. Cells Tissues Organs. 2003;173:184–90.

    Article  PubMed  Google Scholar 

  53. Nakanishi Y, Nogawa H, Hashimoto Y, et al. Accumulation of collagen III at the cleft points of developing mouse submandibular epithelium. Development. 1988;104:51–9.

    PubMed  Google Scholar 

  54. Hayakawa T, Kishi J, Nakanishi Y. Salivary gland morphogenesis: possible involvement of collagenase. Matrix Suppl. 1992;1:344–51.

    PubMed  Google Scholar 

  55. Spooner BS, Thompson-Pletscher HA, Stokes B, Bassett KE. Extracellular matrix involvement in epithelial branching morphogenesis. Dev Biol. 1986;3:225–60.

    Google Scholar 

  56. Fukuda Y, Masuda Y, Kishi J, et al. The role of interstitial collagens in cleft formation of mouse embryonic submandibular gland during initial branching. Development. 1988;103:259–67.

    PubMed  Google Scholar 

  57. Spooner BS, Faubion JM. Collagen involvement in branching morphogenesis of embryonic lung and salivary gland. Dev Biol. 1980;77:84–102. doi:10.1016/0012-1606(80)90458-3.

    Article  PubMed  Google Scholar 

  58. Grobstein C, Cohen J. Collagenase: effect on the morphogenesis of embryonic salivary epithelium in vitro. Science (80- ). 1965;150:626–8.

    Google Scholar 

  59. Durbeej M. Laminins. Cell Tissue Res. 2010;339:259–68. doi:10.1007/s00441-009-0838-2.

    Article  PubMed  Google Scholar 

  60. Kadoya Y, Yamashina S. Distribution of alpha 6 integrin subunit in developing mouse submandibular gland. J Histochem Cytochem. 1993;41:1707–14.

    Article  PubMed  Google Scholar 

  61. Belkin AM, Stepp MA. Integrins as receptors for laminins. Microsc Res Tech. 2000;51:280–301. doi:10.1002/1097-0029(20001101)51:3<280::AID-JEMT7>3.0.CO;2-O.

    Article  PubMed  Google Scholar 

  62. Kadoya Y, Yamashina S. Salivary gland morphogenesis and basement membranes. Anat Sci Int. 2005;80:71–9. doi:10.1111/j.1447-073x.2005.00102.x.

    Article  PubMed  Google Scholar 

  63. Miner JH, Yurchenco PD. Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol. 2004;20:255–84. doi:10.1146/annurev.cellbio.20.010403.094555.

    Article  PubMed  Google Scholar 

  64. Ekblom P, Lonai P, Talts JF. Expression and biological role of laminin-1. Matrix Biol. 2003;22:35–47. doi:10.1016/S0945-053X(03)00015-5.

    Article  PubMed  Google Scholar 

  65. Kadoya Y, Mochizuki M, Nomizu M, et al. Role for laminin-α5 chain LG4 module in epithelial branching morphogenesis. Dev Biol. 2003;263:153–64. doi:10.1016/S0012-1606(03)00446-9.

    Article  PubMed  Google Scholar 

  66. Kadoya Y, Nomizu M, Sorokin LM, et al. Laminin alpha1 chain G domain peptide, RKRLQVQLSIRT, inhibits epithelial branching morphogenesis of cultured embryonic mouse submandibular gland. Dev Dyn. 1998;212:394–402. doi:10.1002/(SICI)1097-0177(199807)212:3<394::AID-AJA7>3.0.CO;2-C.

    Article  PubMed  Google Scholar 

  67. Kadoya Y, Yamashina S. Localization of laminin-5, HD1/plectin, and BP230 in the submandibular glands of developing and adult mice. Histochem Cell Biol. 1999;112:417–25.

    Article  PubMed  Google Scholar 

  68. Patel VN, Knox SM, Likar KM, et al. Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development. 2007;134:4177–86. doi:10.1242/dev.011171.

    Article  PubMed  Google Scholar 

  69. Patel VN, Likar KM, Zisman-Rozen S, et al. Specific heparan sulfate structures modulate FGF10-mediated submandibular gland epithelial morphogenesis and differentiation. J Biol Chem. 2008;283:9308–17. doi:10.1074/jbc.M709995200.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Knox SM, Whitelock JM. Perlecan: how does one molecule do so many things? Cell Mol Life Sci. 2006;63:2435–45. doi:10.1007/s00018-006-6162-z.

    Article  PubMed  Google Scholar 

  71. Farach-Carson MC, Carson DD. Perlecan--a multifunctional extracellular proteoglycan scaffold. Glycobiology. 2007;17:897–905. doi:10.1093/glycob/cwm043.

    Article  PubMed  Google Scholar 

  72. Hopf M, Göhring W, Kohfeldt E, et al. Recombinant domain IV of perlecan binds to nidogens, laminin-nidogen complex, fibronectin, fibulin-2 and heparin. Eur J Biochem. 1999;259:917–25.

    Article  PubMed  Google Scholar 

  73. Hoffman MP, Kidder BL, Steinberg ZL, et al. Gene expression profiles of mouse submandibular gland development: FGFR1 regulates branching morphogenesis in vitro through BMP- and FGF-dependent mechanisms. Development. 2002;129:5767–78.

    Article  PubMed  Google Scholar 

  74. Ohuchi H, Hori Y, Yamasaki M, et al. FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun. 2000;277:643–9. doi:10.1006/bbrc.2000.3721.

    Article  PubMed  Google Scholar 

  75. De Moerlooze L, Spencer-Dene B, Revest JM, et al. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development. 2000;127:483–92.

    PubMed  Google Scholar 

  76. Steinberg Z, Myers C, Heim VM, et al. FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis. Development. 2005;132:1223–34. doi:10.1242/dev.01690.

    Article  PubMed  Google Scholar 

  77. Roignot J, Peng X, Mostov K. Polarity in mammalian epithelial morphogenesis. Cold Spring Harb Perspect Biol. 2013;5(2) doi:10.1101/cshperspect.a013789.

  78. Baker OJ. Tight junctions in salivary epithelium. J Biomed Biotechnol. 2010;2010:278948. doi:10.1155/2010/278948.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Trimble WS, Grinstein S. Barriers to the free diffusion of proteins and lipids in the plasma membrane. J Cell Biol. 2015;208:259–71. doi:10.1083/jcb.201410071.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta Biomembr. 2008;1778:660–9. doi:10.1016/j.bbamem.2007.07.012.

    Article  Google Scholar 

  81. Harris TJ, Tepass U. Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol. 2010; 11:502–14. doi: nrm2927 [pii]\r10.1038/nrm2927.

    Google Scholar 

  82. Nekrasova O, Green KJ. Desmosome assembly and dynamics. Trends Cell Biol. 2013;23:537–46. doi:10.1016/j.tcb.2013.06.004.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Garrod D, Chidgey M. Desmosome structure, composition and function. Biochim Biophys Acta Biomembr. 2008;1778:572–87. doi:http://dx.doi.org/10.1016/j.bbamem.2007.07.014.

    Article  Google Scholar 

  84. Delva E, Tucker DK, Kowalczyk AP. The desmosome. Cold Spring Harb Perspect Biol. 2009;1(2):a002543. doi:10.1101/cshperspect.a002543.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yamada A, Futagi M, Fukumoto E, et al. Connexin 43 is necessary for salivary gland branching morphogenesis and FGF10-induced ERK1/2 phosphorylation. J Biol Chem. 2016;291:904–12. doi:10.1074/jbc.M115.674663.

    Article  PubMed  Google Scholar 

  86. Wozniak MA, Modzelewska K, Kwong L, Keely PJ. Focal adhesion regulation of cell behavior. Biochim Biophys Acta. 2004;1692:103–19. doi:10.1016/j.bbamcr.2004.04.007.

    Article  PubMed  Google Scholar 

  87. Green K, Jones J. Desmosomes and hemidesmosomes: structure and function of molecular components. FASEB J. 1996;10:871–81.

    PubMed  Google Scholar 

  88. Litjens SHM, Sonnenberg A. Hemidesmosomes. In: Encyclopedic reference genomics and proteomics molecular medicine. Berlin/Heidelberg: Springer Berlin Heidelberg; 2006. p. 754–8.

    Chapter  Google Scholar 

  89. Yu W, Datta A, Leroy P, et al. Beta1-integrin orients epithelial polarity via Rac1 and laminin. Mol Biol Cell. 2005;16:433–45. doi:10.1091/mbc.E04-05-0435.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Liu KD, Datta A, Yu W, et al. Rac1 is required for reorientation of polarity and lumen formation through a PI 3-kinase-dependent pathway. Am J Physiol Renal Physiol. 2007;293:F1633–40. doi:10.1152/ajprenal.00053.2007.

    Article  PubMed  Google Scholar 

  91. Assémat E, Bazellières E, Pallesi-Pocachard E, et al. Polarity complex proteins. Biochim Biophys Acta Biomembr. 2008;1778:614–30. doi:10.1016/j.bbamem.2007.08.029.

    Article  Google Scholar 

  92. Bulgakova NA, Knust E. The Crumbs complex: from epithelial-cell polarity to retinal degeneration. J Cell Sci. 2009;122:2587–96. doi:10.1242/jcs.023648.

    Article  PubMed  Google Scholar 

  93. Goldstein B, Macara IG. The PAR proteins: fundamental players in animal cell polarization. Dev Cell. 2007;13:609–22. doi:10.1016/j.devcel.2007.10.007.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chen J, Zhang M. The Par3/Par6/aPKC complex and epithelial cell polarity. Exp Cell Res. 2013;319:1357–64. doi:http://dx.doi.org/10.1016/j.yexcr.2013.03.021.

    Article  PubMed  Google Scholar 

  95. Iden S, Collard JG. Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol. 2008;9:846–59. doi:10.1038/nrm2521.

    Article  PubMed  Google Scholar 

  96. Joberty G, Petersen C, Gao L, Macara IG. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol. 2000;2:531–9. doi:10.1038/35019573.

    Article  PubMed  Google Scholar 

  97. Su W-H, Mruk DD, Wong EWP, et al. Polarity protein complex Scribble/Lgl/Dlg and epithelial cell barriers. Adv Exp Med Biol. 2012;763:149–70.

    PubMed  PubMed Central  Google Scholar 

  98. Rebustini IT, Hayashi T, Reynolds AD, et al. miR-200c regulates FGFR-dependent epithelial proliferation via Vldlr during submandibular gland branching morphogenesis. Development. 2012;139:191–202. doi:10.1242/dev.070151.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Lombaert IMA, Brunsting JF, Wierenga PK, et al. Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS One. 2008;3:e2063. doi:10.1371/journal.pone.0002063.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Feng J, van der Zwaag M, Stokman MA, et al. Isolation and characterization of human salivary gland cells for stem cell transplantation to reduce radiation-induced hyposalivation. Radiother Oncol. 2009;92:466–71.

    Article  PubMed  Google Scholar 

  101. Nanduri LSY, Maimets M, Pringle SA, et al. Regeneration of irradiated salivary glands with stem cell marker expressing cells. Radiother Oncol. 2011;99:367–72. doi:10.1016/j.radonc.2011.05.085.

    Article  PubMed  Google Scholar 

  102. Nanduri LSY, Lombaert IM, der Zwaag M v, et al. Salisphere derived c-Kit(+) cell transplantation restores tissue homeostasis in irradiated salivary gland. Radiother Oncol. 2013;108:458–63. doi:10.1016/j.radonc.2013.05.020.

    Article  PubMed  Google Scholar 

  103. Sato A, Okumura K, Matsumoto S, et al. Isolation, tissue localization, and cellular characterization of progenitors derived from adult human salivary glands. Cloning Stem Cells. 2007;9:191–205. doi:10.1089/clo.2006.0054.

    Article  PubMed  Google Scholar 

  104. Rotter N, Oder J, Schlenke P, et al. Isolation and characterization of adult stem cells from human salivary glands. Stem Cells Dev. 2008;17:509–18. doi:10.1089/scd.2007.0180.

    Article  PubMed  Google Scholar 

  105. Wang Y, Shnyra A, Africa C, et al. Activation of the extrinsic apoptotic pathway by TNF-alpha in human salivary gland (HSG) cells in vitro, suggests a role for the TNF receptor (TNF-R) and intercellular adhesion molecule-1 (ICAM-1) in Sjögren’s syndrome-associated autoimmune sialadenitis. Arch Oral Biol. 2009;54:986–96. doi:10.1016/j.archoralbio.2009.07.011.

    Article  PubMed  Google Scholar 

  106. Pradhan S, Zhang C, Jia X, et al. Perlecan domain IV peptide stimulates salivary gland cell assembly in vitro. Tissue Eng Part A. 2009;15:3309–20. doi:10.1089/ten.TEA.2008.0669.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Pradhan S, Liu C, Zhang C, et al. Lumen formation in three-dimensional cultures of salivary acinar cells. Otolaryngol Head Neck Surg. 2010;142:191–5. doi:10.1016/j.otohns.2009.10.039.

    Article  PubMed  Google Scholar 

  108. Pradhan-Bhatt S, Harrington DA, Duncan RL, et al. Implantable three-dimensional salivary spheroid assemblies demonstrate fluid and protein secretory responses to neurotransmitters. Tissue Eng Part A. 2013;19:1610–20. doi:10.1089/ten.tea.2012.0301.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Pradhan-Bhatt S, Harrington DA, Duncan RL, et al. A novel in vivo model for evaluating functional restoration of a tissue engineered salivary gland. Laryngoscope. 2014;124:456–61. doi:10.1002/lary.24297.

    Article  PubMed  Google Scholar 

  110. Jeong J, Baek H, Kim Y-J, et al. Human salivary gland stem cells ameliorate hyposalivation of radiation-damaged rat salivary glands. Exp Mol Med. 2013;45:e58. doi:10.1038/emm.2013.121.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Song JJ, Kim SS, Liu Z, et al. Enhanced in vivo function of bioartificial lungs in rats. Ann Thorac Surg. 2011;92:998–1006. doi:http://dx.doi.org/10.1016/j.athoracsur.2011.05.018.

    Article  PubMed  Google Scholar 

  112. Gilpin SE, Guyette JP, Gonzalez G, et al. Perfusion decellularization of human and porcine lungs: bringing the matrix to clinical scale. J Heart Lung Transplant. 2014;33:298–308. doi:http://dx.doi.org/10.1016/j.healun.2013.10.030.

    Article  PubMed  Google Scholar 

  113. Gao Z, Wu T, Xu J, et al. Generation of bioartificial salivary gland using whole-organ decellularized bioscaffold. Cells Tissues Organs. 2014;200:171–80.

    Article  PubMed  Google Scholar 

  114. Maria OM, Maria O, Liu Y, et al. Matrigel improves functional properties of human submandibular salivary gland cell line. Int J Biochem Cell Biol. 2011;43:622–31. doi:10.1016/j.biocel.2011.01.001.

    Article  PubMed  Google Scholar 

  115. McCall AD, Nelson JW, Leigh NJ, et al. Growth factors polymerized within fibrin hydrogel promote amylase production in parotid cells. Tissue Eng Part A. 2013;19(19–20):2215–25. doi:10.1089/ten.tea.2012.0674.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Yamada Y, Hozumi K, Aso A, et al. Laminin active peptide/agarose matrices as multifunctional biomaterials for tissue engineering. Biomaterials. 2012;33:4118–25. doi:10.1016/j.biomaterials.2012.02.044.

    Article  PubMed  Google Scholar 

  117. Miller JS, Shen CJ, Legant WR, et al. Bioactive hydrogels made from step-growth derived PEG-peptide macromers. Biomaterials. 2010;31:3736–43. doi:10.1016/j.biomaterials.2010.01.058.Bioactive.

  118. American Transplant Foundation. About transplant: facts and myths. 2016. http://www.americantransplantfoundation.org/about-transplant/facts-and-myths/.

  119. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27:3675–83. doi:10.1016/j.biomaterials.2006.02.014.

    PubMed  Google Scholar 

  120. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–43. doi:10.1016/j.biomaterials.2011.01.057.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Cortiella J, Niles J, Cantu A, et al. Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A. 2010;16:2565–80. doi:10.1089/ten.tea.2009.0730.

    Article  PubMed  Google Scholar 

  122. Hung S-H, Su C-H, Lee F-P, Tseng H. Larynx decellularization: combining freeze-drying and sonication as an effective method. J Voice. 2013;27:289–94. doi:http://dx.doi.org/10.1016/j.jvoice.2013.01.018.

    Article  PubMed  Google Scholar 

  123. Burk J, Erbe I, Berner D, et al. Freeze-thaw cycles enhance decellularization of large tendons. Tissue Eng Part C Methods. 2014;20:276–84. doi:10.1089/ten.TEC.2012.0760.

    Article  PubMed  Google Scholar 

  124. Gardin C, Ricci S, Ferroni L, et al. Decellularization and delipidation protocols of bovine bone and pericardium for bone grafting and guided bone regeneration procedures. PLoS One. 2015;10(7):e0132344. doi:10.1371/journal.pone.0132344.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Xu H, Xu B, Yang Q, et al. Comparison of decellularization protocols for preparing a decellularized porcine annulus fibrosus scaffold. PLoS One. 2014;9(1):e86723. doi:10.1371/journal.pone.0086723.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Porzionato A, Sfriso MM, Macchi V, et al. Decellularized omentum as novel biologic scaffold for reconstructive surgery and regenerative medicine. Eur J Histochem. 2013;57:24–30. doi:10.4081/ejh.2013.e4.

    Article  Google Scholar 

  127. Azhim A, Syazwani N, Morimoto Y, et al. The use of sonication treatment to decellularize aortic tissues for preparation of bioscaffolds. J Biomater Appl. 2014;29:130–41. doi:10.1177/0885328213517579.

    Article  PubMed  Google Scholar 

  128. Oliveira AC, Garzón I, Ionescu AM, et al. Evaluation of small intestine grafts decellularization methods for corneal tissue engineering. PLoS One. 2013;8(6):e66538. doi:10.1371/journal.pone.0066538.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Sarig U, Au-Yeung GCT, Wang Y, et al. Thick acellular heart extracellular matrix with inherent vasculature: a potential platform for myocardial tissue regeneration. Tissue Eng Part A. 2012;18:2125–37. doi:10.1089/ten.TEA.2011.0586.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Barnes CA, Brison J, Michel R, et al. The surface molecular functionality of decellularized extracellular matrices. Biomaterials. 2011;32:137–43. doi:10.1016/j.biomaterials.2010.09.007.

    Article  PubMed  Google Scholar 

  131. Nara S, Chameettachal S, Midha S, et al. Preservation of biomacromolecular composition and ultrastructure of a decellularized cornea using a perfusion bioreactor. RSC Adv. 2016;6:2225–40. doi:10.1039/C5RA20745B.

    Article  Google Scholar 

  132. Baiguera S, Del Gaudio C, Kuevda E, et al. Dynamic decellularization and cross-linking of rat tracheal matrix. Biomaterials. 2014;35:6344–50. doi:http://dx.doi.org/10.1016/j.biomaterials.2014.04.070.

    Article  PubMed  Google Scholar 

  133. Struecker B, Hillebrandt KH, Voitl R, et al. Porcine liver decellularization under oscillating pressure conditions: a technical refinement to improve the homogeneity of the decellularization process. Tissue Eng Part C Methods. 2015;21:303–13. doi:10.1089/ten.tec.2014.0321.

    Article  PubMed  Google Scholar 

  134. Faulk DM, Wildemann JD, Badylak SF. Decellularization and cell seeding of whole liver biologic scaffolds composed of extracellular matrix. J Clin Exp Hepatol. 2015;5:69–80. doi:http://dx.doi.org/10.1016/j.jceh.2014.03.043.

    Article  PubMed  Google Scholar 

  135. Momtahan N, Poornejad N, Struk JA, et al. Automation of pressure control improves whole porcine heart decellularization. Tissue Eng Part C Methods. 2015;21(11):1148–61. 00:150714090832003 doi:10.1089/ten.tec.2014.0709.

    Article  PubMed  Google Scholar 

  136. Sullivan DC, Mirmalek-Sani S-H, Deegan DB, et al. Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials. 2012;33:7756–64. doi:10.1016/j.biomaterials.2012.07.023.

    Article  PubMed  Google Scholar 

  137. Price AP, England KA, Matson AM, et al. Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng Part A. 2010;16:2581–91. doi:10.1089/ten.tea.2009.0659.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Daly AB, Wallis JM, Borg ZD, et al. Initial binding and recellularization of decellularized mouse lung scaffolds with bone marrow-derived mesenchymal stromal cells. Tissue Eng Part A. 2011;18:1–16. doi:10.1089/ten.tea.2011.0301.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Wallis JM, Borg ZD, Daly AB, et al. Comparative assessment of detergent-based protocols for mouse lung de-cellularization and re-cellularization. Tissue Eng Part C Methods. 2012;18:420–32. doi:10.1089/ten.tec.2011.0567.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Weymann A, Patil NP, Sabashnikov A, et al. Perfusion-decellularization of porcine lung and trachea for respiratory bioengineering. Artif Organs. 2015;39:1024–32. doi:10.1111/aor.12481.

    Article  PubMed  Google Scholar 

  141. Ott HC, Clippinger B, Conrad C, et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med. 2010;16:927–33.

    Article  PubMed  Google Scholar 

  142. Hudson TW, Liu SY, Schmidt CE. Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng. 2004;10:1346–58. doi:10.1089/ten.2004.10.1346.

    Article  PubMed  Google Scholar 

  143. Petersen TH, Calle EA, Zhao L, et al. Tissue-engineered lungs for in vivo implantation. Science. 2010;329:538–41. doi:10.1126/science.1189345.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Elder BD, Eleswarapu SV, Athanasiou KA. Extraction techniques for the decellularization of tissue engineered articular cartilage constructs. Biomaterials. 2009;30:3749–56. doi:10.1016/j.biomaterials.2009.03.050.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Meyer SR, Nagendran J, Desai LS, et al. Decellularization reduces the immune response to aortic valve allografts in the rat. J Thorac Cardiovasc Surg. 2005;130:469–76. doi:10.1016/j.jtcvs.2005.03.021.

    Article  PubMed  Google Scholar 

  146. Choi YC, Choi JS, Kim BS, et al. Decellularized extracellular matrix derived from porcine adipose tissue as a xenogeneic biomaterial for tissue engineering. Tissue Eng Part C Methods. 2012;18:866–76. doi:10.1089/ten.tec.2012.0009.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Lumpkins SB, Pierre N, McFetridge PS. A mechanical evaluation of three decellularization methods in the design of a xenogeneic scaffold for tissue engineering the temporomandibular joint disc. Acta Biomater. 2008;4:808–16. doi:http://dx.doi.org/10.1016/j.actbio.2008.01.016.

    Article  PubMed  Google Scholar 

  148. Gratzer PF, Harrison RD, Woods T. Matrix alteration and not residual sodium dodecyl sulfate cytotoxicity affects the cellular repopulation of a decellularized matrix. Tissue Eng. 2006;12:2975–83. doi:10.1089/ten.2006.12.ft-234.

    Article  PubMed  Google Scholar 

  149. Sawkins MJ, Bowen W, Dhadda P, et al. Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomater. 2013;9:7865–73. doi:10.1016/j.actbio.2013.04.029.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Saghizadeh M, Winkler MA, Kramerov AA, et al. A simple alkaline method for decellularizing human amniotic membrane for cell culture. PLoS One. 2013;8(11):e79632. doi:10.1371/journal.pone.0079632.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Ott HC, Matthiesen TS, Goh S-K, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14:213–21.

    Article  PubMed  Google Scholar 

  152. Robertson MJ, Dries-Devlin JL, Kren SM, et al. Optimizing recellularization of whole decellularized heart extracellular matrix. PLoS One. 2014;9:e90406. doi:10.1371/journal.pone.0090406.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Price AP, Godin LM, Domek A, et al. Automated decellularization of intact, human-sized lungs for tissue engineering. Tissue Eng Part C Methods. 2015;21:94–103. doi:10.1089/ten.tec.2013.0756.

    Article  PubMed  Google Scholar 

  154. Moroni F, Mirabella T. Decellularized matrices for cardiovascular tissue engineering. Am J Stem Cells. 2014;3:1–20.

    PubMed  PubMed Central  Google Scholar 

  155. Traphagen SB, Fourligas N, Xylas JF, et al. Characterization of natural, decellularized and reseeded porcine tooth bud matrices. Biomaterials. 2012;33:5287–96. doi:10.1016/j.biomaterials.2012.04.010.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Macchiarini P, Jungebluth P, Go T, et al. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372:2023–30. doi:10.1016/S0140-6736(08)61598-6.

    Article  PubMed  Google Scholar 

  157. Chuang P-T, McMahon AP. Branching morphogenesis of the lung: new molecular insights into an old problem. Trends Cell Biol. 2016;13:86–91. doi:10.1016/S0962-8924(02)00031-4.

    Article  Google Scholar 

  158. Andrew DJ, Ewald AJ. Morphogenesis of epithelial tubes: insights into tube formation, elongation, and elaboration. Dev Biol. 2010;341:34–55. doi:10.1016/j.ydbio.2009.09.024.

    Article  PubMed  Google Scholar 

  159. Swarr DT, Morrisey EE. Lung endoderm morphogenesis: gasping for form and function. Annu Rev Cell Dev Biol. 2015;31:553–73. doi:10.1146/annurev-cellbio-100814-125249.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Quissell DO, Barzen KA, Redman RS, et al. Development and characterization of SV40 immortalized rat parotid acinar cell lines. Vitr Cell Dev Biol. 1998;34:58–67. doi:10.1007/s11626-998-0054-5.

    Article  Google Scholar 

  161. Baker OJ, Schulz DJ, Camden JM, et al. Rat parotid gland cell differentiation in three-dimensional culture. Tissue Eng Part C Methods. 2010;16:1135–44. doi:10.1089/ten.tec.2009.0438.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Shirasuna K, Sato M, Miyazaki T. A neoplastic epithelial duct cell line established from an irradiated human salivary gland. Cancer. 1981;48:745–52. doi:10.1002/1097-0142(19810801)48:3<745::AID-CNCR2820480314>3.0.CO;2-7.

    Article  PubMed  Google Scholar 

  163. Royce LS, Kibbey MC, Mertz P, et al. Human neoplastic submandibular intercalated duct cells express an acinar phenotype when cultured on a basement membrane matrix. Differentiation. 1993;52:247–55. doi:10.1111/j.1432-0436.1993.tb00637.x.

    Article  PubMed  Google Scholar 

  164. Hoffman MP, Kibbey MC, Letterio JJ, Kleinman HK. Role of laminin-1 and TGF-beta 3 in acinar differentiation of a human submandibular gland cell line (HSG). J Cell Sci. 1996;109(Pt 8):2013–21.

    PubMed  Google Scholar 

  165. Jung DW, Hecht D, Ho SW, et al. PKC and ERK1/2 regulate amylase promoter activity during differentiation of a salivary gland cell line. J Cell Physiol. 2000;185:215–25. doi:10.1002/1097-4652(200011)185:2<215::AID-JCP6>3.0.CO;2-L.

    Article  PubMed  Google Scholar 

  166. Szlávik V, Vág J, Markó K, et al. Matrigel-induced acinar differentiation is followed by apoptosis in HSG cells. J Cell Biochem. 2008;103:284–95. doi:10.1002/jcb.21404.

    Article  PubMed  Google Scholar 

  167. Capes-Davis A, Theodosopoulos G, Atkin I, et al. Check your cultures! A list of cross-contaminated or misidentified cell lines. Int J Cancer. 2010;127:1–8. doi:10.1002/ijc.25242.

    Article  PubMed  Google Scholar 

  168. Maria OM, Zeitouni A, Gologan O, Tran SD. Matrigel improves functional properties of primary human salivary gland cells. Tissue Eng Part A. 2011;17:1229–38.

    Article  PubMed  Google Scholar 

  169. Szlávik V, Szabó B, Vicsek T, et al. Differentiation of primary human submandibular gland cells cultured on basement membrane extract. Tissue Eng Part A. 2008;14:1915–26. doi:10.1089/ten.tea.2007.0208.

    Article  PubMed  Google Scholar 

  170. Pradhan S, Farach-Carson MC. Mining the extracellular matrix for tissue engineering applications. Regen Med. 2010;5:961–70. doi:10.2217/rme.10.61.

    Article  PubMed  Google Scholar 

  171. Mouw JK, Ou G, Weaver VM. Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol. 2014;15:771–85.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Giancotti FG, Ruoslahti E. Integrin signaling. Science (80- ). 1999;285:1028–33.

    Google Scholar 

  173. Durban EM. Mouse submandibular salivary epithelial cell growth and differentiation in long-term culture: influence of the extracellular matrix. In Vitro Cell Dev Biol. 1990;26:33–43.

    Article  PubMed  Google Scholar 

  174. Furue M, Okamoto T, Hayashi H, et al. Effects of hepatocyte growth factor (HGF) and activin A on the morphogenesis of rat submandibular gland-derived epithelial cells in serum-free collagen gel culture. In Vitro Cell Dev Biol Anim. 1999;35:131–5.

    Article  PubMed  Google Scholar 

  175. Joraku A, Sullivan CA, Yoo J, Atala A. In-vitro reconstitution of three-dimensional human salivary gland tissue structures. Differentiation. 2007;75:318–24. doi:10.1111/j.1432-0436.2006.00138.x.

    Article  PubMed  Google Scholar 

  176. Burford-Mason AP, Dardick I, Mackay A. Collagen gel cultures of normal salivary gland: conditions for continued proliferation and maintenance of major cell phenotypes in vitro. Laryngoscope. 1994;104:335–40. doi:10.1288/00005537-199403000-00016.

    Article  PubMed  Google Scholar 

  177. Weisel JW. Fibrinogen and fibrin. Adv Protein Chem. 2005;70:247–99. doi:10.1016/S0065-3233(05)70008-5.

    Article  PubMed  Google Scholar 

  178. Cantara SI, Soscia DA, Sequeira SJ, et al. Selective functionalization of nanofiber scaffolds to regulate salivary gland epithelial cell proliferation and polarity. Biomaterials. 2012;33:8372–82. doi:10.1016/j.biomaterials.2012.08.021.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Yin N, Santos TMA, Auer GK, et al. Bacterial cellulose as a substrate for microbial cell culture. Appl Environ Microbiol. 2014;80(6):1926–32. doi:10.1128/AEM.03452-13.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Modulevsky DJ, Lefebvre C, Haase K, et al. Apple derived cellulose scaffolds for 3D mammalian cell culture. PLoS One. 2014;9:e97835. doi:10.1371/journal.pone.0097835.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Bhattacharya M, Malinen MM, Lauren P, et al. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release. 2012;164:291–8. doi:http://dx.doi.org/10.1016/j.jconrel.2012.06.039

    Article  PubMed  Google Scholar 

  182. Hardingham T. Chemistry and biology of hyaluronan. Chem Biol Hyaluronan. 2004. doi:10.1016/B978-008044382-9/50032-7.

  183. Xu X, Jha AK, Harrington DA, et al. Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft Matter. 2012;8:3280–94. doi:10.1039/C2SM06463D.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Turley EA, Noble PW, Bourguignon LYW. Signaling properties of hyaluronan receptors. J Biol Chem. 2002;277:4589–92. doi:10.1074/jbc.R100038200.

    Article  PubMed  Google Scholar 

  185. Peach RJ, Hollenbaugh D, Stamenkovic I, Aruffo A. Identification of hyaluronic acid binding sites in the extracellular domain of CD44. J Cell Biol. 1993;122:257–64.

    Article  PubMed  Google Scholar 

  186. Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;23:41–56. doi:10.1002/adma.201003963.

    Article  Google Scholar 

  187. Lee JY, Spicer AP. Hyaluronan: a multifunctional, megaDalton, stealth molecule. Curr Opin Cell Biol. 2000;12:581–6.

    Article  PubMed  Google Scholar 

  188. Shubin AD, Felong TJ, Graunke D, et al. Development of poly(ethylene glycol) hydrogels for salivary gland tissue engineering applications. Tissue Eng Part A. 2015;21:1733–51. doi:10.1089/ten.tea.2014.0674.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Hosokawa Y, Takahashi Y, Kadoya Y, et al. Significant role of laminin-1 in branching morphogenesis of mouse salivary epithelium cultured in basement membrane matrix. Dev Growth Differ. 1999;41:207–16. doi:10.1046/j.1440-169x.1999.00419.x.

    Article  PubMed  Google Scholar 

  190. Hoffman MP, Nomizu M, Roque E, et al. Laminin-1 and laminin-2 G-domain synthetic peptides bind syndecan-1 and are involved in acinar formation of a human submandibular gland cell line. J Biol Chem. 1998;273:28633–41. doi:10.1074/jbc.273.44.28633.

    Article  PubMed  Google Scholar 

  191. Farach-Carson MC, Brown AJ, Lynam M, et al. A novel peptide sequence in perlecan domain IV supports cell adhesion, spreading and FAK activation. Matrix Biol. 2008;27:150–60. doi:10.1016/j.matbio.2007.09.007.

    Article  PubMed  Google Scholar 

  192. Nakanishi Y, Sugiura F, Kishi JI, Hayakawa T. Collagenase inhibitor stimulates cleft formation during early morphogenesis of mouse salivary gland. Dev Biol. 1986;113:201–6. doi:10.1016/0012-1606(86)90122-3.

    Article  PubMed  Google Scholar 

  193. Fong ELS, Wan X, Yang J, et al. A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions. Biomaterials. 2016;77:164–72. doi:10.1016/j.biomaterials.2015.10.059.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH R01DE022969 (MCFC, DAH), NIH F32DE024697 (DW), NSF Graduate Research Fellowship Program (GRFP) DGE-1450681 (MM), and private philanthropic donations. The authors would like to thank Dr. Robert L. Witt, Dr. Xinqiao Jia, Dr. Swati Pradhan-Bhatt, as well as all of the salivary team members for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Harrington PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martinez, M., Wu, D., Farach-Carson, M.C., Harrington, D.A. (2017). Matrix Biology of the Salivary Gland: A Guide for Tissue Engineering. In: Cha, S. (eds) Salivary Gland Development and Regeneration. Springer, Cham. https://doi.org/10.1007/978-3-319-43513-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43513-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43511-4

  • Online ISBN: 978-3-319-43513-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics