Skip to main content

Histologic Changes in the Salivary Glands Following Radiation Therapy

  • Chapter
  • First Online:

Abstract

Therapeutic radiation for cancer of the head and neck damages salivary glands that are situated between the radiation source and the target tumor and its metastases. With moderate to high radiation exposure, salivary glands are devastated and regeneration is limited. The resulting severe reduction in saliva has detrimental effects on the teeth and oral mucosa. The purpose of this review is to describe some of the salient histologic features of salivary gland structures and cells, how these are functionally related to salivary production, and thus how radiation-induced loss and functional impairment of each type of structure may contribute to reduced quantity and quality of saliva.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aalto Y, Forsgren S, Kjorell U, Franzen L, Gustafsson H, Henriksson R. Time- and dose-related changes in the expression of substance P in salivary glands in response to fractionated irradiation. Int J Radiat Oncol Biol Phys. 1995;33:297–305.

    Article  PubMed  Google Scholar 

  2. Abok K, Brunk U, Jung B, Ericsson J. Morphologic and histochemical studies on the differing radiosensitivity of ductular and acinar cells of the rat submandibular gland. Virchows Arch Cell Pathol. 1984;45:443–60.

    Article  Google Scholar 

  3. Ahmad M, Piludu M, Oppenheim FG, Helmerhorst EJ, Hand AR. Immunocytochemical localization of histatins in human salivary glands. J Histochem Cytochem. 2004;52:361–70.

    Article  PubMed  Google Scholar 

  4. Akamatsu T, Parvin MN, Murdiastuti K, Kosugi-Tanaka C, Yao CJ, Miki O, Kanamori N, Hosoi K. Expression and localization of aquaporins, members of the water channel family, during development of the rat submandibular gland. Pflügers Arch-Eur J Physiol. 2003;446:641–5.

    Article  Google Scholar 

  5. Ballagh RH, Kudryk KG, Lampe HB, Moriarity B, Mackay A, Burford-Mason AP, Dardick I. The pathobiology of salivary gland. III. PCNA-localization of cycling cells induced in rat submandibular gland by low-dose x-irradiation. Oral Surg Oral Med Oral Pathol. 1994;77:27–35.

    Article  PubMed  Google Scholar 

  6. Bandyopadhyay BC, Swaim WD, Sarkar A, Liu X, Ambudkar IS. Extracellular Ca (2+) sensing in rat salivary duct cells. J Biol Chem. 2012;287:30305–16.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bartel-Friedrich S, Friedrich RE, Lautenschlager C, Holzhausen HJ. Dose-response relationships and the effect of age and latency period on the expression of laminin in irradiated rat mandibular glands. Anticancer Res. 2000;20:221–5228.

    Google Scholar 

  8. Becciolini A, Giannardi CL, Porciani S, Fallai C, Pirtoli L. Plasma amylase activity as a biochemical indicator of radiation injury to salivary glands. Acta Radiol Oncol. 1984;23:353–9.

    Article  PubMed  Google Scholar 

  9. Caselitz J, Osborn M, Wustrow J, Seifert G, Weber K. Immunohistochemical investigations on the epimyoepithelial islands in lymphoepithelial lesions. Use of monoclonal keratin antibodies. Lab Invest. 1986;44:427–32.

    Google Scholar 

  10. Cherry CP, Gluckman A. Injury and repair following irradiation of salivary glands in male rats. Br J Radiol. 1959;32:596–608.

    Article  PubMed  Google Scholar 

  11. Chomette G, Auriol M, Vaillant JM, Bertrand JC, Chenal C. Effects of irradiation on the submandibular gland of the rat. Virchows Arch (Pathol Anat). 1981;391:291–9.

    Article  Google Scholar 

  12. Christensen ME, Hansesn HS, Poulsen SS, Bretlau P, Nexo E. Immunochemical and quantitative changes in salivary EGF, amylase and haptocorrin following radiotherapy for oral cancer. Acta Otolaryngol. 1996;116:137–43.

    Article  PubMed  Google Scholar 

  13. Coppes RP, Zeilstra LJW, Kampinga HH, Konings AWT. Early to late sparing of radiation damage to the parotid gland by adrenergic and muscarinic receptor agonists. Br J Cancer. 2001;85:1055–63.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cossu M, Perra MT, Piludi M, Lantini MS. Subcellular localization of epidermal growth factor in human submandibular gland. Histochem J. 2000;32:291–4.

    Article  PubMed  Google Scholar 

  15. Culp DJ, Latchney LR, Fallon MA, Denny PA, Denny PC, Couwenhoven RI, Chuang S. The gene encoding mouse Muc19: cDNA, genomic organization and relationship to Smgc. Physiol Genomics. 2004;19:303–18.

    Article  PubMed  Google Scholar 

  16. Dardick I, Parks WR, Little J, Brown DL. Characterization of cytoskeletal proteins in basal cells of human parotid salivary gland ducts. Virchows Arch A Pathol Anat Histopathol. 1988;412:525–32.

    Article  PubMed  Google Scholar 

  17. Dirix P, Nuyts S, Van den Bogaert W. Radiation-induced xerostomia in patients with head and neck cancer. A literature review. Cancer. 2006;107:2525–34.

    Article  PubMed  Google Scholar 

  18. Eversole LR. Histogenetic classification of salivary gland tumors. Arch Pathol. 1971;92:433–43.

    PubMed  Google Scholar 

  19. Fajardo LF. Salivary glands and pancreas. In: Fajardo LF, editor. Pathology of radiation injury. New York: Masson Publishing USA; 1982. p. 77–87.

    Google Scholar 

  20. Farbman AI. The taste bud: a model system for developmental studies. In: Slavkin HC, Bavetta LA, editors. Developmental aspects of oral biology. New York: Academic Press; 1972. p. 109–23.

    Chapter  Google Scholar 

  21. Feng J, van der Zwaag M, Stokman MA, van Os R, Coppes RP. Isolation and characterization of human salivary gland stem cells for stem cell transplantation to reduce radiation-induced hyposalivation. Radiother Oncol. 2009;92:466–71.

    Article  PubMed  Google Scholar 

  22. Forsgren S, Franzen L, Liang Y, Gustafsson H, Henriksson R. Effects of irradiation on neuropeptide expression in rat salivary gland and spinal cord. Histochem J. 1994;26:630–40.

    Article  PubMed  Google Scholar 

  23. Frank RM, Herdly J, Phillipe E. Acquired dental defects and salivary gland lesions after irradiation for carcinoma. J Am Dent Assoc. 1965;70:868–83.

    Article  PubMed  Google Scholar 

  24. Garrett JR. The innervation of normal human submandibular and parotid salivary glands. Arch Oral Biol. 1967;12:1417–36.

    Article  PubMed  Google Scholar 

  25. Geiger S, Geiger B, Leitner O, Marshak G. Cytokeratin polypeptides expression in different epithelial elements of human salivary glands. Virchows Arch A Pathol Anat Histopathol. 1987;410:403–14.

    Article  PubMed  Google Scholar 

  26. Gresik EW. The granular convoluted tubule (GCT) of rodent submandibular glands. Microsc Res Tech. 1994;27:1–24.

    Article  PubMed  Google Scholar 

  27. Gugliotta P, Sapino A, Macri L, Skalli O, Gabbiani G, Busolati G. Specific demonstration of myoepithelial cells by anti-alpha smooth muscle actin antibody. J Histochem Cytochem. 1988;36:659–63.

    Article  PubMed  Google Scholar 

  28. Hand AR. The fine structure of von Ebner’s gland in the rat. J Cell Biol. 1970;44:340–52.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hand AR. Adrenergic and cholinergic nerve terminals in the rat parotid gland. Electron microscopic observations on permanganate -fixed glands. Anat Rec. 1972;173:131–40.

    Article  PubMed  Google Scholar 

  30. Hand AR. Synthesis of secretory and plasma membrane glycoproteins by striated duct cells of rat salivary glands as visualized by radioautography after 3H-fucose injection. Anat Rec. 1979;195:317–39.

    Google Scholar 

  31. He X, Tse C-M, Donowitz M, Alper SL, Gabriel SE, Baum BJ. Polarized distribution of key membrane transport membranes in the rat submandibular gland. Pflügers Arch-Eur J Physiol. 1997;433:260–8.

    Article  Google Scholar 

  32. Henson BS, Inglehart MR, Eisbruch A, Ship JA. Preserved salivary output and xerostomia-related quality of life in head and neck cancer patients receiving parotid -sparing radiotherapy. Oral Oncol. 2001;37:84–93.

    Article  PubMed  Google Scholar 

  33. Izutsu KT. Salivary electrolytes and fluid protection in heath and disease. In: Sreebny LM, editor. The salivary system. Boca Raton: CRC Press; 1987. p. 95–122.

    Google Scholar 

  34. Kohn WG, Grossman E, Fox PC, Armando I, Goldstein DS, Baum BJ. Effect of ionizing radiation on sympathetic nerve function in rat parotid glands. J Oral Pathol Med. 1992;21:134–7.

    Article  PubMed  Google Scholar 

  35. Konturek SJ, Dembinski A, Warzecha Z, Brzozowski T, Gregory H. Role of epidermal growth factor in healing of chronic gastroduodenal ulcers in rats. Gastroenterology. 1988;84:1300–7.

    Article  Google Scholar 

  36. Konturek PG, Ernst EH, Konturek J, Bobrzynski T, Kwiecien N, Faller G, Gedliczka O, Hahn EG. Salivary and gastric luminal release of epidermal growth factor under basal conditions and after pentagastrin stimulation in healthy and in duodenal ulcer patients before and after eradication of Helicobacter pylori. J Physiol Pharmacol. 1997;47:187–94.

    Google Scholar 

  37. Lantini MS, Piludi M, Cossu M. Subcellular localization of epidermal growth factor in human parotid gland. Histochem J. 2001;33:427–31.

    Article  PubMed  Google Scholar 

  38. Larsen HS, Aure MH, Peters SB, Larsen M, Messelt EB, Galtung HK. Localization of AQP5 during development of the mouse submandibular salivary gland. J Mol Histol. 2011; doi:10.1007/s10735-010-9308-0.

    PubMed Central  Google Scholar 

  39. Leinonen J, Parkkila S, Kaunisto K, Koivunen P, Rajaniemi H. Secretion of carbonic anhydrase isoenzyme VI (CA VI) from human and rat lingual serous von Ebner’s glands. J Histochem Cytochem. 2001;49:657–62.

    Article  PubMed  Google Scholar 

  40. Lombaert IM, Wierenga PK, Kok T, Kampinga HH, deHaan G, Coppes RP. Mobilization of bone marrow stem cells by granulocyte colony-stimulating factor ameliorates radiation-induced damage to salivary glands. Clin Cancer Res. 2006;12:1804–12.

    Article  PubMed  Google Scholar 

  41. Lombaert IMA, Brunsting JF, Wierenga PK, Faber H, Stokman MA, Kok T, Visser WH, Kampinga HH, de Haan G, Coppes RP. Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS One. 2008;3:e2063. doi:10.1371/journal.pone.ooo2603: 1-16.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lombaert IMA, Abrams SR, Li L, Eswarakumar VP, Sethi AJ, Witt RL, Hoffman MP. Combined KIT and FGFR2b signaling regulates epithelial progenitor expansion during organogenesis. Stem Cell Reports. 2013;1:604–19.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Luna LG 1968. Manual of histologic staining methods of the Armed Forces Institute of Pathology. 3rd edn. New York: McGraw-Hill. p. 94, 127–128.

    Google Scholar 

  44. Ma L, Wang WP, Chow JY, Yuen ST, Cho CH. Reduction of EGF is associated with the delay of ulcer healing by cigarette smoking. Am J Physiol Gastrointest Liver Physiol. 2000;278:G10–7.

    PubMed  Google Scholar 

  45. Maier H, Bihl H. Effect of radioactive iodine therapy on salivary glands. Acta Otolaryngol. 1987;103:318–24.

    Article  Google Scholar 

  46. Malouf JG, Aragon C, Henson BS, Eisbruch A, Ship JA. Influence of parotid-sparing radiotherapy on xerostomia in head and neck cancer. Cancer Detect Prev. 2003;27:305–10.

    Article  PubMed  Google Scholar 

  47. Malpighi M. Epistolae anatomicae. De viscerum structura exercitatio anatomica. In: Opera omnia. London: Robert Littlebury; 1687. p. 51–144.

    Google Scholar 

  48. Man Y-G, Ball WD, Marchetti L, Hand AR. Contributions of intercalated duct cells to the normal parenchyma of submandibular glands of adult rats. Anat Rec. 2001;263:201–14.

    Article  Google Scholar 

  49. Mancini DM, Veit BC. Salivary growth factor in patients with and without acid peptic ulcer disease. Am J Gastroenterol. 1990;85:1102–4.

    Google Scholar 

  50. Mandel SJ, Mandel L. Radioactive iodine and the salivary glands. Thyroid. 2003;13:265–71.

    Article  PubMed  Google Scholar 

  51. Mangos JA, Braun G, Hamann KF. Micropuncture study of sodium and potassium excretion in the rat parotid gland. Pflügers Arch ges Physiol. 1966;291:88–106.

    Article  Google Scholar 

  52. Maria OM, Maria SM, Redman RS, Maria AM, El-Din TAS, Soussa EF, Tran SD. Effects of double ligation of Stensen’s duct on the rabbit parotid gland. Biotech Histochem. 2014;82:181–98.

    Article  Google Scholar 

  53. Matsuo R. Role of saliva in the maintenance of taste sensitivity. Crit Rev Oral Biol Med. 2000;11:216–29.

    Article  PubMed  Google Scholar 

  54. Messelt EB, Berg T. Effect of autonomic nerve stimulation on bleb formation in striated duct cells of the rat submandibular gland. Acta Odontol Scand. 1987;45:275–81.

    Article  PubMed  Google Scholar 

  55. Moreira JE, Hand AR, Ball WD. Localization of neonatal secretory proteins in different cell types of the developing rat submandibular gland from embryogenesis to adulthood. Dev Biol. 1990;139:370–82.

    Article  PubMed  Google Scholar 

  56. Mori M. Histochemistry of the salivary glands. Boca Raton: CRC Press; 1991. p. 1–85.

    Google Scholar 

  57. Mowry RW. The special value of methods that color both acidic and vicinal hydroxyl groups in the histochemical study of mucins. With revised directions for the colloidal iron stain, the use of alcian blue 8GX and their combinations with the periodic acid-Schiff reaction. Ann N Y Acad Sci. 1963;106:402–23.

    Article  Google Scholar 

  58. Murdoch-Kinch CA, Russo N, Griffith S, Braun T, Eisbruch A, D’Silva NJ. Recovery of salivary epidermal growth factor in parotid saliva following sparing radiation therapy: a proof of principle study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;111:64–70.

    Article  PubMed  Google Scholar 

  59. Nagato T, Yoshida H, Yoshida A, Uehara Y. A scanning electron microscope study of myoepithelial cells in exocrine glands. Cell Tissue Res. 1980;209:1–10.

    Article  PubMed  Google Scholar 

  60. Nagler RM, Baum BJ, Miller G, Fox PC. Long-term salivary effects of single-dose head and neck irradiation in the rat. Arch Oral Biol. 1998;43:297–303.

    Article  PubMed  Google Scholar 

  61. Nagler RM. The enigmatic mechanism of irradiation-induced damage to the major salivary glands. Oral Dis. 2002;8:141–6.

    Article  PubMed  Google Scholar 

  62. Nagy A, Nagashima H, Cha S, Oxford GE, Zelles T, Peck AB, Humphreys-Beher MG. Reduced wound healing in the NOD mouse model for Type I autoimmune diabetes and its reversal by epidermal growth factor supplementation. Diabetes. 2001;50:2100–4.

    Article  PubMed  Google Scholar 

  63. Noguchi S, Ohba Y, Oka T. Effect of salivary growth factor on wound healing of tongue in mice. Am J Physiol. 1991;260:E620–5.

    PubMed  Google Scholar 

  64. O’Connell AC, Redman RS, Evans RL, Ambudkar IS. Irradiation-induced progressive decrease in fluid secretion in rat salivary glands is related to decreased acinar volume and not impaired signaling. Radiat Res. 1999;151:150–8.

    Article  PubMed  Google Scholar 

  65. Oxford GE, Jonsson R, Olofsson J, Zelles T, Humphreys-Beher MG. Elevated levels of human salivary epidermal growth factor after oral and juxtaoral surgery. J Oral Maxillofac Surg. 1999;57:154–9.

    Article  PubMed  Google Scholar 

  66. Peter B, Van Waarde MAWH, Vissink A, ’s-Gravenmade EJ, Konings AWT (1994) Radiation-induced cell proliferation in the parotid and submandibular glands of the rat. Radiat Res 140: 257–265.

    Article  PubMed  Google Scholar 

  67. Peter B, Van Waarde MAWH, Vissink A, ’s-Gravenmade EJ, Konings AWT (1995) The role of secretory granules in radiation-induced dysfunction of rat salivary glands. Radiat Res 141: 176–182.

    Article  PubMed  Google Scholar 

  68. Phillipe RM. X-ray-induced changes in function and structure of the rat parotid gland. J Oral Surg. 1970;28:431–7.

    Google Scholar 

  69. Redman RS. The anterior buccal gland of the rat: a mucous salivary gland which develops as a branch of stensen’s duct. Anat Rec. 1972;172:167–78.

    Article  PubMed  Google Scholar 

  70. Redman RS. The importance of the minor salivary glands. Northwest Dent. 1974;53:19–23. 1974)

    Google Scholar 

  71. Redman RS. Myoepithelium of the salivary glands. Microsc Res Tech. 1994;27:25–45.

    Article  PubMed  Google Scholar 

  72. Redman RS. Proliferative activity by cell type in the developing rat parotid gland. Anat Rec. 1995;241:529–40.

    Article  PubMed  Google Scholar 

  73. Redman RS. On approaches to the functional restoration of salivary glands damaged by therapeutic irradiation for head and neck cancer, with a review of related aspects of salivary gland morphology and development. Biotech Histochem. 2008;83:103–30.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Redman RS. Morphologic diversity of the minor salivary glands of the rat: fertile ground for studies in gene function and proteomics. Biotech Histochem. 2012;87:273–87.

    Article  PubMed  Google Scholar 

  75. Redman RS, Ball WD. Differentiation of myoepithelial cells in the developing rat sublingual gland. Am J Anat. 1979;156:543–66.

    Article  PubMed  Google Scholar 

  76. Redman RS, Field RB. Chronology of salivary peroxidase activity in the developing rat parotid gland. Anat Rec. 1993;235:611–21.

    Article  PubMed  Google Scholar 

  77. Riva A, Puxeddu P, Del Fiacco M, Testa-Riva F. Ultrastructural localization of endogenous peroxidase activity in human parotid and submandibular glands. J Anat. 1978;127:181–91.

    PubMed  PubMed Central  Google Scholar 

  78. Sandow PI, Hejrat-Yazdi M, Heft MW. Taste loss and recovery following radiation therapy. J Dent Res. 2006;85:608–11.

    Article  PubMed  Google Scholar 

  79. Sato A, Miyoshi S. Fine structure of tuft cells of the main excretory duct in the rat submandibular gland. Anat Rec. 1997;248:325–31.

    Article  PubMed  Google Scholar 

  80. Schneyer CA. Mitosis induced in adult rat parotid following normal activity of the gland. Proc Soc Exp Biol Med. 1970;134:603–7.

    Article  Google Scholar 

  81. Schneyer LH, Schneyer CA. Inorganic composition of saliva. In: Code CF, editor. Secretion. Handbook of physiology, section 6, vol. 2. Washington, DC: American Physiological Society; 1967. p. 497–529.

    Google Scholar 

  82. Shackleford JM, Schneyer LH. Ultrastructural aspects of the main excretory duct of rat submandibular gland. Anat Rec. 1971;169:679–96.

    Article  PubMed  Google Scholar 

  83. Ship JA, Hu K. Radiotherapy-induced salivary dysfunction. Semin Oncol. 2004;31(Suppl. 18):29–36.

    Article  PubMed  Google Scholar 

  84. Sholley MM, Sodicoff M, Pratt NE. Early radiation injury in the rat parotid gland. Reaction of acinar cells and vascular endothelium. Lab Invest. 1974;31:340–54.

    PubMed  Google Scholar 

  85. Stiubea-Cohen R, David R, Neumann Y, Krief G, Deutsch O, Zacks B, Aframian DJ, Palmon A. Effect of irradiation on cell transcriptome and proteome of rat submandibular salivary glands. PLoS One. 2012;7(7):e40636. doi:10.1371/journal pone.0040636.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Tabak LA. In defense of the oral cavity. Pediatr Dent. 2006;28:110–7.

    PubMed  Google Scholar 

  87. Takahashi S, Nakamura S, Suzuki R, Islam N, Domon T, Yamamoto T, Wakita M. Changing myoepithelial cell distribution during regeneration of rat parotid glands. Int J Exp Pathol. 1999;80:283–90.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Tamarin A. Myoepithelium of the rat submaxillary gland. J Ultrastruct Res. 1966;16:320–38.

    Article  PubMed  Google Scholar 

  89. Tamarin A, Sreebny LM. The rat submaxillary gland. A correlative study by light and electron microscopy. J Morphol. 1965;117:295–352.

    Article  PubMed  Google Scholar 

  90. Tamarin A, Walker J. A longitudinal study of parotid secretory kinematics by cinematography and computer analysis. Pflügers Arch. 1976;366:101–6.

    Article  PubMed  Google Scholar 

  91. Tandler B. Ultrastucture of the human submaxillary gland. III. Myoepithelium. Z Zellforsch. 1965;68:852–63.

    Google Scholar 

  92. Tandler B. Structure of the human parotid and submandibular glands. In: Sreebny LM, editor. The salivary system. Boca Raton: CRC Press; 1987. p. 21–41.

    Google Scholar 

  93. Tandler B. Structure of the duct system in mammalian major salivary glands. Microsc Res Tech. 1993;26:57–74.

    Article  PubMed  Google Scholar 

  94. Tatemoto Y, Kumasa S, Watanabe Y, Mori M. Epithelial membrane antigen as a marker of human salivary gland acinar and ductal cell function. Acta Histochem. 1987;82:219–26.

    Article  PubMed  Google Scholar 

  95. Tepperman BL, Kiernan JA, Soper BD. The effect of sialoadenectomy on gastric mucosal integrity in the rat: roles of epidermal growth factor and prostaglandin E2. Can J Physiol Pharmacol. 1989;67:1512–9.

    Article  PubMed  Google Scholar 

  96. Teste-Riva F, Puxeddu P, Riva A, Diaz G. The epithelium of the excretory duct of the human submandibular gland: a transmission and scanning electron microscopic study. Am J Anat. 1981;160:361–93.

    Google Scholar 

  97. Thesleff I, Vinikka L, Saxén S, Lehtonen E, Perheentupa J. The parotid gland is the main source of human salivary epidermal growth factor. Life Sci. 1988;43:13–8.

    Article  PubMed  Google Scholar 

  98. Tran SD, Pillemer SR, Dutra A, Barrett AJ, Brownstein MJ, Keys S, Pak E, Leakan RA, Kingman A, Yamada KM, Baum BJ, Mezey E. Differentiation of human bone marrow-derived cells into buccal epithelial cells in vivo: a molecular analytical study. Lancet. 2003;361:1084–8.

    Article  PubMed  Google Scholar 

  99. Tran SD, Redman RS, Barrett AJ, Pavletic SZ, Key S, Liu Y, Carpenter A, Nguyen HM, Sumita Y, Baum BJ, Pillemer SR, Mezey É. Microchimerism in salivary glands after blood- and marrow-derived stem cell transplantation. Biol Blood Marrow Transplant. 2011;17:429–33.

    Article  PubMed  Google Scholar 

  100. Valdez IH, Atkinson JC, Ship JA, Fox PC. Major salivary gland function in patients with radiation-induced xerostomia: flow rates and sialochemistry. Int J Radiat Oncol Biol Phys. 1992;25:41–7.

    Article  Google Scholar 

  101. Vissink A, Jansma J, Spijkervet F, Burlage FR, Coppes RP. Oral sequelae of head and neck radiotherapy. Crit Rev Oral Biol Med. 2003a;14:199–212.

    Article  PubMed  Google Scholar 

  102. Vissink A, Burlage FR, Spijkervet F, Jansma J, Coppes RP. Prevention and treatment of the consequences of head and neck radiotherapy. Crit Rev Oral Biol Med. 2003b;14:213–25.

    Article  PubMed  Google Scholar 

  103. Williams PL, editor. Gray’s anatomy. New York: Charles Livingston; 1996.

    Google Scholar 

  104. Yamashina S. Immunohistochemical study of amylase and deoxyribonuclease in rat parotid gland. Acta Histochem Cytochem. 1981;14:236–60.

    Article  Google Scholar 

  105. Young JA, Schlögel E. Micropuncture investigation of sodium and potassium excretion in the rat submaxillary gland. Pflügers Arch ges Physiol. 1966;291:85–98.

    Article  Google Scholar 

  106. Young JA, van Lennep EW. The morphology of salivary glands. New York: Academic Press; 1978.

    Google Scholar 

  107. Yopilko A, Caillou B. Fine structural localization of acetylcholinesterase activity in the rat submandibular gland. J Histochem Cytochem. 1989;33:439–45.

    Article  Google Scholar 

Download references

Acknowledgments

I thank Su-Wan Chen, Helen Cormier, Edward Flores, Lyvouch Filkoski, Patricia Lewis, Rodney McNutt, and Shirley McLaughlin for preparing the tissues for morphologic evaluation. The research enabling the illustrations was supported in part by grants DE-102, DE-03002, 1-K4-DE-40-019, and DE-14995 from the National Institute of Dental and Craniofacial Research, the National Institutes of Health, Bethesda, MD, the Universities of Colorado, Minnesota, and Washington, and by Research Career and Merit Review Awards from the United States Department of Veterans Affairs. Figures 4.5 and 4.6, the legends to these figures, and some of the text are reproduced from Redman [73], with prior permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Redman DDS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Redman, R.S. (2017). Histologic Changes in the Salivary Glands Following Radiation Therapy. In: Cha, S. (eds) Salivary Gland Development and Regeneration. Springer, Cham. https://doi.org/10.1007/978-3-319-43513-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43513-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43511-4

  • Online ISBN: 978-3-319-43513-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics