Skip to main content

Implications of Salivary Gland Developmental Mechanisms for the Regeneration of Adult Damaged Tissues

  • Chapter
  • First Online:
Salivary Gland Development and Regeneration

Abstract

The convergence of the fields of tissue engineering and regenerative medicine provides a potential blueprint to repair damaged tissues. Accordingly, a range of therapeutic applications have emerged that hold great potential to regenerate branching organs, such as salivary glands. This unique saliva-secreting organ is required for proper oral health, lubrication, immunity, and food digestion but is susceptible to damage either by co-irradiation as a side effect of radiotherapy cancer treatment, autoimmune-related Sjögren syndrome, disease-related medications, or surgical resection. This chapter focuses on fundamental cellular and molecular processes occurring during organ ontogenesis and in developing branching glands. We cover the growth of the epithelial compartment, which is the major functional component of the gland, but also how surrounding niches such as mesenchymal, endothelial, and neuronal cells communicate, intertwine, and influence the formation of glands and other branching organs. Finally, we highlight how this key information has created new regenerative-related approaches and how these impact future clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arany S, Benoit DS, Dewhurst S, Ovitt CE. Nanoparticle-mediated gene silencing confers radioprotection to salivary glands in vivo. Mol Ther. 2013;21(6):1182–94. doi:10.1038/mt.2013.42.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Armulik A, Genove G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193–215. doi:10.1016/j.devcel.2011.07.001.

    Article  PubMed  Google Scholar 

  3. Arnold K, Sarkar A, Yram MA, Polo JM, Bronson R, Sengupta S, Seandel M, Geijsen N, Hochedlinger K. Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell. 2011;9(4):317–29. doi:10.1016/j.stem.2011.09.001.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Aure MH, Arany S, Ovitt CE. Salivary glands: stem cells, self-duplication, or both? J Dent Res. 2015;94(11):1502–7. doi:10.1177/0022034515599770.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Banh A, Xiao N, Cao H, Chen CH, Kuo P, Krakow T, Bavan B, Khong B, Yao M, Ha C, Kaplan MJ, Sirjani D, Jensen K, Kong CS, Mochly-Rosen D, Koong AC, Le QT. A novel aldehyde dehydrogenase-3 activator leads to adult salivary stem cell enrichment in vivo. Clin Cancer Res. 2011;17(23):7265–72. doi:10.1158/1078-0432.CCR-11-0179.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Baum BJ, Alevizos I, Zheng C, Cotrim AP, Liu S, McCullagh L, Goldsmith CM, Burbelo PD, Citrin DE, Mitchell JB, Nottingham LK, Rudy SF, Van Waes C, Whatley MA, Brahim JS, Chiorini JA, Danielides S, Turner RJ, Patronas NJ, Chen CC, Nikolov NP, Illei GG. Early responses to adenoviral-mediated transfer of the aquaporin-1 cDNA for radiation-induced salivary hypofunction. Proc Natl Acad Sci U S A. 2012;109(47):19403–7. doi:10.1073/pnas.1210662109.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Baum BJ, Ship JA, Wu AJ. Salivary gland function and aging: a model for studying the interaction of aging and systemic disease. Crit Rev Oral Biol Med. 1992;4(1):53–64.

    Article  PubMed  Google Scholar 

  8. Beetz I, Steenbakkers RJ, Chouvalova O, Leemans CR, Doornaert P, van der Laan BF, Christianen ME, Vissink A, Bijl HP, van Luijk P, Langendijk JA. The QUANTEC criteria for parotid gland dose and their efficacy to prevent moderate to severe patient-rated xerostomia. Acta Oncol. 2014;53(5):597–604. doi:10.3109/0284186X.2013.831186.

    Article  PubMed  Google Scholar 

  9. Bower DV, Lee HK, Lansford R, Zinn K, Warburton D, Fraser SE, Jesudason EC. Airway branching has conserved needs for local parasympathetic innervation but not neurotransmission. BMC Biol. 2014;12:92. doi:10.1186/s12915-014-0092-2.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bullard T, Koek L, Roztocil E, Kingsley PD, Mirels L, Ovitt CE. Ascl3 expression marks a progenitor population of both acinar and ductal cells in mouse salivary glands. Dev Biol. 2008;320(1):72–8. doi:10.1016/j.ydbio.2008.04.018.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bussard KM, Smith GH. The mammary gland microenvironment directs progenitor cell fate in vivo. Int J Cell Biol. 2011;2011:451676. doi:10.1155/2011/451676.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cardoso WV, Lu J. Regulation of early lung morphogenesis: questions, facts and controversies. Development. 2006;133(9):1611–24. doi:10.1242/dev.02310.

    Article  PubMed  Google Scholar 

  13. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 1996;380(6573):435–9. doi:10.1038/380435a0.

    Article  PubMed  Google Scholar 

  14. Carolan PJ, Melton DA. New findings in pancreatic and intestinal endocrine development to advance regenerative medicine. Curr Opin Endocrinol Diabetes Obes. 2013;20(1):1–7. doi:10.1097/MED.0b013e32835bc380.

    Article  PubMed  Google Scholar 

  15. Chung L, Yang TL, Huang HR, Hsu SM, Cheng HJ, Huang PH. Semaphorin signaling facilitates cleft formation in the developing salivary gland. Development. 2007;134(16):2935–45. doi:10.1242/dev.005066.

    Article  PubMed  Google Scholar 

  16. Cotrim AP, Sowers A, Mitchell JB, Baum BJ. Prevention of irradiation-induced salivary hypofunction by microvessel protection in mouse salivary glands. Mol Ther. 2007;15(12):2101–6. doi:10.1038/sj.mt.6300296.

    Article  PubMed  Google Scholar 

  17. Cotroneo E, Proctor GB, Carpenter GH. Regeneration of acinar cells following ligation of rat submandibular gland retraces the embryonic-perinatal pathway of cytodifferentiation. Differentiation. 2010;79(2):120–30. doi:10.1016/j.diff.2009.11.005.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Davis GE, Senger DR. Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res. 2005;97(11):1093–107. doi:10.1161/01.RES.0000191547.64391.e3.

    Article  PubMed  Google Scholar 

  19. Delli K, Spijkervet FK, Kroese FG, Bootsma H, Vissink A. Xerostomia. Monogr Oral Sci. 2014;24:109–25. doi:10.1159/000358792.

    Article  PubMed  Google Scholar 

  20. Drummond JR, Newton JP, Abel RW. Tomographic measurements of age changes in the human parotid gland. Gerodontology. 1995;12(1):26–30.

    Article  PubMed  Google Scholar 

  21. Ekstrom J, Khosravani N, Castagnola M, Messana I. Saliva and the control of its secretion. In: Ekberg O, editor. Dysphagia. Berlin/Heidelberg: Springer; 2012. doi:10.1007/978-3-642-17887-0.

    Google Scholar 

  22. Fagan AM, Zhang H, Landis S, Smeyne RJ, Silos-Santiago I, Barbacid M. TrkA, but not TrkC, receptors are essential for survival of sympathetic neurons in vivo. J Neurosci. 1996;16(19):6208–18.

    PubMed  Google Scholar 

  23. Ferreira JN, Hoffman MP. Interactions between developing nerves and salivary glands. Organogenesis. 2013;9(3):199–205. doi:10.4161/org.25224.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fruhbeis C, Frohlich D, Kuo WP, Amphornrat J, Thilemann S, Saab AS, Kirchhoff F, Mobius W, Goebbels S, Nave KA, Schneider A, Simons M, Klugmann M, Trotter J, Kramer-Albers EM. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol. 2013;11(7):e1001604. doi:10.1371/journal.pbio.1001604.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Garcia-Gallastegui P, Ibarretxe G, Garcia-Ramirez JJ, Baladron V, Aurrekoetxea M, Nueda ML, Naranjo AI, Santaolalla F, Sanchez-del Rey A, Laborda J, Unda F. DLK1 regulates branching morphogenesis and parasympathetic innervation of salivary glands through inhibition of NOTCH signalling. Biol Cell. 2014;106(8):237–53. doi:10.1111/boc.201300086.

    Article  PubMed  Google Scholar 

  26. Garcia-Gallastegui P, Luzuriaga J, Aurrekoetxea M, Baladron V, Ruiz-Hidalgo MJ, Garcia-Ramirez JJ, Laborda J, Unda F, Ibarretxe G. Reduced salivary gland size and increased presence of epithelial progenitor cells in DLK1-deficient mice. Cell Tissue Res. 2015; doi:10.1007/s00441-015-2344-z.

    PubMed  Google Scholar 

  27. Ghasemlou N, Krol KM, Macdonald DR, Kawaja MD. Comparison of target innervation by sympathetic axons in adult wild type and heterozygous mice for nerve growth factor or its receptor trkA. J Pineal Res. 2004;37(4):230–40. doi:10.1111/j.1600-079X.2004.00160.x.

    Article  PubMed  Google Scholar 

  28. Grobstein C. Inductive epitheliomesenchymal interaction in cultured organ rudiments of the mouse. Science. 1953a;118(3054):52–5.

    Article  PubMed  Google Scholar 

  29. Grobstein C. Morphogenetic interaction between embryonic mouse tissues separated by a membrane filter. Nature. 1953b;172(4384):869–70.

    Article  PubMed  Google Scholar 

  30. Guo L, Gao R, Xu J, Jin L, Cotrim AP, Yan X, Zheng C, Goldsmith CM, Shan Z, Hai B, Zhou J, Zhang C, Baum BJ, Wang S. AdLTR2EF1alpha-FGF2-mediated prevention of fractionated irradiation-induced salivary hypofunction in swine. Gene Ther. 2014;21(10):866–73. doi:10.1038/gt.2014.63.

    Article  PubMed  Google Scholar 

  31. Haara O, Fujimori S, Schmidt-Ullrich R, Hartmann C, Thesleff I, Mikkola ML. Ectodysplasin and Wnt pathways are required for salivary gland branching morphogenesis. Development. 2011;138(13):2681–91. doi:10.1242/dev.057711.

    Article  PubMed  Google Scholar 

  32. Hai B, Qin L, Yang Z, Zhao Q, Shangguan L, Ti X, Zhao Y, Kim S, Rangaraj D, Liu F. Transient activation of hedgehog pathway rescued irradiation-induced hyposalivation by preserving salivary stem/progenitor cells and parasympathetic innervation. Clin Cancer Res. 2014;20(1):140–50. doi:10.1158/1078-0432.CCR-13-1434.

    Article  PubMed  Google Scholar 

  33. Hai B, Yang Z, Millar SE, Choi YS, Taketo MM, Nagy A, Liu F. Wnt/beta-catenin signaling regulates postnatal development and regeneration of the salivary gland. Stem Cells Dev. 2010;19(11):1793–801. doi:10.1089/scd.2009.0499.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hai B, Yang Z, Shangguan L, Zhao Y, Boyer A, Liu F. Concurrent transient activation of Wnt/beta-catenin pathway prevents radiation damage to salivary glands. Int J Radiat Oncol Biol Phys. 2012;83(1):e109–16. doi:10.1016/j.ijrobp.2011.11.062.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hall BE, Zheng C, Swaim WD, Cho A, Nagineni CN, Eckhaus MA, Flanders KC, Ambudkar IS, Baum BJ, Kulkarni AB. Conditional overexpression of TGF-beta1 disrupts mouse salivary gland development and function. Lab Invest. 2010;90(4):543–55. doi:10.1038/labinvest.2010.5.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hashizume A, Hieda Y. Hedgehog peptide promotes cell polarization and lumen formation in developing mouse submandibular gland. Biochem Biophys Res Commun. 2006;339(3):996–1000. doi:10.1016/j.bbrc.2005.11.106.

    Article  PubMed  Google Scholar 

  37. Hayashi T, Koyama N, Azuma Y, Kashimata M. Mesenchymal miR-21 regulates branching morphogenesis in murine submandibular gland in vitro. Dev Biol. 2011;352(2):299–307. doi:10.1016/j.ydbio.2011.01.030.

    Article  PubMed  Google Scholar 

  38. Hick AC, van Eyll JM, Cordi S, Forez C, Passante L, Kohara H, Nagasawa T, Vanderhaeghen P, Courtoy PJ, Rousseau GG, Lemaigre FP, Pierreux CE. Mechanism of primitive duct formation in the pancreas and submandibular glands: a role for SDF-1. BMC Dev Biol. 2009;9:66. doi:10.1186/1471-213X-9-66.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hill G, Headon D, Harris ZI, Huttner K, Limesand KH. Pharmacological activation of the EDA/EDAR signaling pathway restores salivary gland function following radiation-induced damage. PLoS One. 2014;9(11):e112840. doi:10.1371/journal.pone.0112840.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Holmberg KV, Hoffman MP. Anatomy, biogenesis and regeneration of salivary glands. Monogr Oral Sci. 2014;24:1–13. doi:10.1159/000358776.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Holsinger FC, Bui DT. Anatomy, function, and evaluation of the salivary glands. In: Myers EN, Ferris RL, editors. Salivary gland disorders. Berlin/Heidelberg: Springer; 2007. p. 1–16. doi:10.1007/978-3-540-47072-4_1.

    Chapter  Google Scholar 

  42. Janebodin K, Buranaphatthana W, Ieronimakis N, Hays AL, Reyes M. An in vitro culture system for long-term expansion of epithelial and mesenchymal salivary gland cells: role of TGF-beta1 in salivary gland epithelial and mesenchymal differentiation. Biomed Res Int. 2013;2013:815895. doi:10.1155/2013/815895.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jaskoll T, Leo T, Witcher D, Ormestad M, Astorga J, Bringas Jr P, Carlsson P, Melnick M. Sonic hedgehog signaling plays an essential role during embryonic salivary gland epithelial branching morphogenesis. Dev Dyn. 2004;229(4):722–32. doi:10.1002/dvdy.10472.

    Article  PubMed  Google Scholar 

  44. Jaskoll T, Zhou YM, Chai Y, Makarenkova HP, Collinson JM, West JD, Hajihosseini MK, Lee J, Melnick M. Embryonic submandibular gland morphogenesis: stage-specific protein localization of FGFs, BMPs, Pax6 and Pax9 in normal mice and abnormal SMG phenotypes in FgfR2-IIIc(+/Delta), BMP7(−/−) and Pax6(−/−) mice. Cells Tissues Organs. 2002;170(2–3):83–98.

    PubMed  Google Scholar 

  45. Jaskoll T, Zhou YM, Trump G, Melnick M. Ectodysplasin receptor-mediated signaling is essential for embryonic submandibular salivary gland development. Anat Rec A Discov Mol Cell Evol Biol. 2003;271(2):322–31. doi:10.1002/ar.a.10045.

    Article  PubMed  Google Scholar 

  46. Kang JH, Kim BK, Park BI, Kim HJ, Ko HM, Yang SY, Kim MS, Jung JY, Kim WJ, Oh WM, Kim SH, Kim JH. Parasympathectomy induces morphological changes and alters gene-expression profiles in the rat submandibular gland. Arch Oral Biol. 2010;55(1):7–14. doi:10.1016/j.archoralbio.2009.11.003.

    Article  PubMed  Google Scholar 

  47. Kettunen P, Laurikkala J, Itaranta P, Vainio S, Itoh N, Thesleff I. Associations of FGF-3 and FGF-10 with signaling networks regulating tooth morphogenesis. Dev Dyn. 2000;219(3):322–32. doi:10.1002/1097-0177(2000)9999:9999<::AID-DVDY1062>3.0.CO;2-J.

    Article  PubMed  Google Scholar 

  48. Knosp WM, Knox SM, Lombaert IM, Haddox CL, Patel VN, Hoffman MP. Submandibular parasympathetic gangliogenesis requires sprouty-dependent Wnt signals from epithelial progenitors. Dev Cell. 2015;32(6):667–77. doi:10.1016/j.devcel.2015.01.023.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Knox SM, Lombaert IM, Haddox CL, Abrams SR, Cotrim A, Wilson AJ, Hoffman MP. Parasympathetic stimulation improves epithelial organ regeneration. Nat Commun. 2013;4:1494. doi:10.1038/ncomms2493.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Knox SM, Lombaert IM, Reed X, Vitale-Cross L, Gutkind JS, Hoffman MP. Parasympathetic innervation maintains epithelial progenitor cells during salivary organogenesis. Science. 2010;329(5999):1645–7. doi:10.1126/science.1192046.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kobashi M, Ichikawa H, Kobashi M, Funahashi M, Mitoh Y, Matsuo R. The origin of sensory nerve fibers that innervate the submandibular salivary gland in the rat. Brain Res. 2005;1060(1–2):184–7. doi:10.1016/j.brainres.2005.08.012.

    Article  PubMed  Google Scholar 

  52. Kohn WG, Grossman E, Fox PC, Armando I, Goldstein DS, Baum BJ. Effect of ionizing radiation on sympathetic nerve function in rat parotid glands. J Oral Pathol Med. 1992;21(3):134–7.

    Article  PubMed  Google Scholar 

  53. Kojima T, Kanemaru S, Hirano S, Tateya I, Suehiro A, Kitani Y, Kishimoto Y, Ohno S, Nakamura T, Ito J. The protective efficacy of basic fibroblast growth factor in radiation-induced salivary gland dysfunction in mice. Laryngoscope. 2011;121(9):1870–5. doi:10.1002/lary.21873.

    PubMed  Google Scholar 

  54. Kopf M, Schneider C, Nobs SP. The development and function of lung-resident macrophages and dendritic cells. Nat Immunol. 2015;16(1):36–44. doi:10.1038/ni.3052.

    Article  PubMed  Google Scholar 

  55. Kyriacou K, Garrett JR. Morphological changes in the rabbit submandibular gland after parasympathetic or sympathetic denervation. Arch Oral Biol. 1988;33(4):281–90.

    Article  PubMed  Google Scholar 

  56. Langendijk JA, Lambin P, De Ruysscher D, Widder J, Bos M, Verheij M. Selection of patients for radiotherapy with protons aiming at reduction of side effects: the model-based approach. Radiother Oncol. 2013;107(3):267–73. doi:10.1016/j.radonc.2013.05.007.

    Article  PubMed  Google Scholar 

  57. Lombaert IM, Abrams SR, Li L, Eswarakumar VP, Sethi AJ, Witt RL, Hoffman MP. Combined KIT and FGFR2b signaling regulates epithelial progenitor expansion during organogenesis. Stem Cell Rep. 2013;1(6):604–19. doi:10.1016/j.stemcr.2013.10.013.

    Article  Google Scholar 

  58. Lombaert IM, Brunsting JF, Wierenga PK, Faber H, Stokman MA, Kok T, Visser WH, Kampinga HH, de Haan G, Coppes RP. Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS One. 2008a;3(4):e2063. doi:10.1371/journal.pone.0002063.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lombaert IM, Brunsting JF, Wierenga PK, Kampinga HH, de Haan G, Coppes RP. Cytokine treatment improves parenchymal and vascular damage of salivary glands after irradiation. Clin Cancer Res. 2008b;14(23):7741–50. doi:10.1158/1078-0432.CCR-08-1449.

    Article  PubMed  Google Scholar 

  60. Lombaert IM, Brunsting JF, Wierenga PK, Kampinga HH, de Haan G, Coppes RP. Keratinocyte growth factor prevents radiation damage to salivary glands by expansion of the stem/progenitor pool. Stem Cells. 2008c;26(10):2595–601. doi:10.1634/stemcells.2007-1034.

    Article  PubMed  Google Scholar 

  61. Lombaert IM, Movahednia MM, Adine C, Ferreira JN. Salivary gland regeneration: therapeutic approaches from stem cells to tissue organoids. Stem Cells. 2016. doi:10.1002/stem.2455

  62. Maimets M, Rocchi C, Bron R, Pringle S, Kuipers J, Giepmans BN, Vries RG, Clevers H, de Haan G, van Os R, Coppes RP. Long-term in vitro expansion of salivary gland stem cells driven by Wnt signals. Stem Cell Rep. 2016;6(1):150–62. doi:10.1016/j.stemcr.2015.11.009.

    Article  Google Scholar 

  63. Makita T, Sucov HM, Gariepy CE, Yanagisawa M, Ginty DD. Endothelins are vascular-derived axonal guidance cues for developing sympathetic neurons. Nature. 2008;452(7188):759–63. doi:10.1038/nature06859.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mandell E, Seedorf GJ, Ryan S, Gien J, Cramer SD, Abman SH. Antenatal endotoxin disrupts lung vitamin D receptor and 25-hydroxyvitamin D 1alpha-hydroxylase expression in the developing rat. Am J Physiol Lung Cell Mol Physiol. 2015;309(9):L1018–26. doi:10.1152/ajplung.00253.2015.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mandour MA, Helmi AM, El-Sheikh MM, El-Garem F, El-Ghazzawi E. Effect of tympanic neurectomy on human parotid salivary gland. Histopathologic, Histochemical, and Clinical Study. Arch Otolaryngol. 1977;103(6):338–41.

    Article  PubMed  Google Scholar 

  66. Martin KL, Hill GA, Klein RR, Arnett DG, Burd R, Limesand KH. Prevention of radiation-induced salivary gland dysfunction utilizing a CDK inhibitor in a mouse model. PLoS One. 2012;7(12):e51363. doi:10.1371/journal.pone.0051363.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mathison R, Davison JS, Befus AD. Neuroendocrine regulation of inflammation and tissue repair by submandibular gland factors. Immunol Today. 1994;15(11):527–32.

    Article  PubMed  Google Scholar 

  68. McGovern AE, Mazzone SB. Neural regulation of inflammation in the airways and lungs. Auton Neurosci. 2014;182:95–101. doi:10.1016/j.autneu.2013.12.008.

    Article  PubMed  Google Scholar 

  69. Mitchell GC, Fillinger JL, Sittadjody S, Avila JL, Burd R, Limesand KH. IGF1 activates cell cycle arrest following irradiation by reducing binding of DeltaNp63 to the p21 promoter. Cell Death Dis. 2010;1:e50.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Miyazaki Y, Nakanishi Y, Hieda Y. Tissue interaction mediated by neuregulin-1 and ErbB receptors regulates epithelial morphogenesis of mouse embryonic submandibular gland. Dev Dyn. 2004;230(4):591–6. doi:10.1002/dvdy.20078.

    Article  PubMed  Google Scholar 

  71. Nanduri LS, Lombaert IM, van der Zwaag M, Faber H, Brunsting JF, van Os RP, Coppes RP. Salisphere derived c-Kit+ cell transplantation restores tissue homeostasis in irradiated salivary gland. Radiother Oncol. 2013;108(3):458–63. doi:10.1016/j.radonc.2013.05.020.

    Article  PubMed  Google Scholar 

  72. Nanduri LS, Maimets M, Pringle SA, van der Zwaag M, van Os RP, Coppes RP. Regeneration of irradiated salivary glands with stem cell marker expressing cells. Radiother Oncol. 2011;99(3):367–72. doi:10.1016/j.radonc.2011.05.085.

    Article  PubMed  Google Scholar 

  73. Nedvetsky PI, Emmerson E, Finley JK, Ettinger A, Cruz-Pacheco N, Prochazka J, Haddox CL, Northrup E, Hodges C, Mostov KE, Hoffman MP, Knox SM. Parasympathetic innervation regulates tubulogenesis in the developing salivary gland. Dev Cell. 2014;30(4):449–62. doi:10.1016/j.devcel.2014.06.012.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Nordgarden H, Johannessen S, Storhaug K, Jensen JL. Salivary gland involvement in hypohidrotic ectodermal dysplasia. Oral Dis. 1998;4(2):152–4.

    Article  PubMed  Google Scholar 

  75. Nussenzweig SC, Verma S, Finkel T. The role of autophagy in vascular biology. Circ Res. 2015;116(3):480–8. doi:10.1161/CIRCRESAHA.116.303805.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pagella P, Jimenez-Rojo L, Mitsiadis TA. Roles of innervation in developing and regenerating orofacial tissues. Cell Mol Life Sci. 2014;71(12):2241–51. doi:10.1007/s00018-013-1549-0.

    Article  PubMed  Google Scholar 

  77. Palaniyandi S, Odaka Y, Green W, Abreo F, Caldito G, De Benedetti A, Sunavala-Dossabhoy G. Adenoviral delivery of Tousled kinase for the protection of salivary glands against ionizing radiation damage. Gene Ther. 2011;18(3):275–82. doi:10.1038/gt.2010.142.

    Article  PubMed  Google Scholar 

  78. Patel N, Sharpe PT, Miletich I. Coordination of epithelial branching and salivary gland lumen formation by Wnt and FGF signals. Dev Biol. 2011;358(1):156–67. doi:10.1016/j.ydbio.2011.07.023.

    Article  PubMed  Google Scholar 

  79. Patel VN, Hoffman MP. Salivary gland development: a template for regeneration. Semin Cell Dev Biol. 2014;25-26:52–60. doi:10.1016/j.semcdb.2013.12.001.

    Article  PubMed  Google Scholar 

  80. Patel VN, Lombaert IM, Cowherd SN, Shworak NW, Xu Y, Liu J, Hoffman MP. Hs3st3-modified heparan sulfate controls KIT+ progenitor expansion by regulating 3-O-sulfotransferases. Dev Cell. 2014;29(6):662–73. doi:10.1016/j.devcel.2014.04.024.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Prockop DJ. Inflammation, fibrosis, and modulation of the process by mesenchymal stem/stromal cells. Matrix Biol. 2016; doi:10.1016/j.matbio.2016.01.010.

    PubMed  Google Scholar 

  82. Proctor GB, Asking B. A comparison between changes in rat parotid protein composition 1 and 12 weeks following surgical sympathectomy. Q J Exp Physiol. 1989;74(6):835–40.

    Article  PubMed  Google Scholar 

  83. Rebustini IT, Hayashi T, Reynolds AD, Dillard ML, Carpenter EM, Hoffman MP. miR-200c regulates FGFR-dependent epithelial proliferation via Vldlr during submandibular gland branching morphogenesis. Development. 2012;139(1):191–202. doi:10.1242/dev.070151.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Rebustini IT, Myers C, Lassiter KS, Surmak A, Szabova L, Holmbeck K, Pedchenko V, Hudson BG, Hoffman MP. MT2-MMP-dependent release of collagen IV NC1 domains regulates submandibular gland branching morphogenesis. Dev Cell. 2009;17(4):482–93. doi:10.1016/j.devcel.2009.07.016.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Reinert RB, Cai Q, Hong JY, Plank JL, Aamodt K, Prasad N, Aramandla R, Dai C, Levy SE, Pozzi A, Labosky PA, Wright CV, Brissova M, Powers AC. Vascular endothelial growth factor coordinates islet innervation via vascular scaffolding. Development. 2014;141(7):1480–91. doi:10.1242/dev.098657.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Rodriguez-Diaz R, Caicedo A. Neural control of the endocrine pancreas. Best Pract Res Clin Endocrinol Metab. 2014;28(5):745–56. doi:10.1016/j.beem.2014.05.002.

    Article  PubMed  Google Scholar 

  87. Rothova M, Thompson H, Lickert H, Tucker AS. Lineage tracing of the endoderm during oral development. Dev Dyn. 2012;241(7):1183–91. doi:10.1002/dvdy.23804.

    Article  PubMed  Google Scholar 

  88. Rugel-Stahl A, Elliott ME, Ovitt CE. Ascl3 marks adult progenitor cells of the mouse salivary gland. Stem Cell Res. 2012;8(3):379–87. doi:10.1016/j.scr.2012.01.002.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ryu YK, Collins SE, Ho HY, Zhao H, Kuruvilla R. An autocrine Wnt5a-Ror signaling loop mediates sympathetic target innervation. Dev Biol. 2013;377(1):79–89. doi:10.1016/j.ydbio.2013.02.013.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Steinberg Z, Myers C, Heim VM, Lathrop CA, Rebustini IT, Stewart JS, Larsen M, Hoffman MP. FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis. Development. 2005;132(6):1223–34. doi:10.1242/dev.01690.

    Article  PubMed  Google Scholar 

  91. Sugimoto T, Taya Y, Shimazu Y, Soeno Y, Sato K, Aoba T. Three-dimensional visualization of developing neurovascular architecture in the craniofacial region of embryonic mice. Anat Rec (Hoboken). 2015;298(11):1824–35. doi:10.1002/ar.23179.

    Article  Google Scholar 

  92. Sumita Y, Liu Y, Khalili S, Maria OM, Xia D, Key S, Cotrim AP, Mezey E, Tran SD. Bone marrow-derived cells rescue salivary gland function in mice with head and neck irradiation. Int J Biochem Cell Biol. 2011;43(1):80–7. doi:10.1016/j.biocel.2010.09.023.

    Article  PubMed  Google Scholar 

  93. Sun W, Ni X, Sun S, Cai L, Yu J, Wang J, Nie B, Sun Z, Ni X, Cao X. Adipose-derived stem cells alleviate radiation-induced muscular fibrosis by suppressing the expression of TGF-beta1. Stem Cells Int. 2016;2016:5638204. doi:10.1155/2016/5638204.

    PubMed  Google Scholar 

  94. Talavera-Adame D, Dafoe DC. Endothelium-derived essential signals involved in pancreas organogenesis. World J Exp Med. 2015;5(2):40–9. doi:10.5493/wjem.v5.i2.40.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Tanida S, Kataoka H, Mizoshita T, Shimura T, Kamiya T, Joh T. Intranuclear translocation signaling of HB-EGF carboxy-terminal fragment and mucosal defense through cell proliferation and migration in digestive tracts. Digestion. 2010;82(3):145–9. doi:10.1159/000310903.

    Article  PubMed  Google Scholar 

  96. Tucker AS. Salivary gland development. Semin Cell Dev Biol. 2007;18(2):237–44. doi:10.1016/j.semcdb.2007.01.006.

    Article  PubMed  Google Scholar 

  97. van Luijk P, Pringle S, Deasy JO, Moiseenko VV, Faber H, Hovan A, Baanstra M, van der Laan HP, Kierkels RG, van der Schaaf A, Witjes MJ, Schippers JM, Brandenburg S, Langendijk JA, Wu J, Coppes RP. Sparing the region of the salivary gland containing stem cells preserves saliva production after radiotherapy for head and neck cancer. Sci Transl Med. 2015;7(305):305ra147. doi:10.1126/scitranslmed.aac4441.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wang H, Yang YF, Zhao L, Xiao FJ, Zhang QW, Wen ML, Wu CT, Peng RY, Wang LS. Hepatocyte growth factor gene-modified mesenchymal stem cells reduce radiation-induced lung injury. Hum Gene Ther. 2013;24(3):343–53. doi:10.1089/hum.2012.177.

    Article  PubMed  Google Scholar 

  99. Wells KL, Gaete M, Matalova E, Deutsch D, Rice D, Tucker AS. Dynamic relationship of the epithelium and mesenchyme during salivary gland initiation: the role of Fgf10. Biol Open. 2013;2(10):981–9. doi:10.1242/bio.20135306.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wells KL, Mou C, Headon DJ, Tucker AS. Recombinant EDA or Sonic Hedgehog rescue the branching defect in Ectodysplasin A pathway mutant salivary glands in vitro. Dev Dyn. 2010;239(10):2674–84. doi:10.1002/dvdy.22406.

    Article  PubMed  Google Scholar 

  101. Wright DM, Buenger DE, Abashev TM, Lindeman RP, Ding J, Sandell LL. Retinoic acid regulates embryonic development of mammalian submandibular salivary glands. Dev Biol. 2015;407(1):57–67. doi:10.1016/j.ydbio.2015.08.008.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496(7446):445–55. doi:10.1038/nature12034.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Xiao N, Lin Y, Cao H, Sirjani D, Giaccia AJ, Koong AC, Kong CS, Diehn M, Le QT. Neurotrophic factor GDNF promotes survival of salivary stem cells. J Clin Invest. 2014;124(8):3364–77. doi:10.1172/JCI74096.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Xue J, Li X, Lu Y, Gan L, Zhou L, Wang Y, Lan J, Liu S, Sun L, Jia L, Mo X, Li J. Gene-modified mesenchymal stem cells protect against radiation-induced lung injury. Mol Ther. 2013;21(2):456–65. doi:10.1038/mt.2012.183.

    Article  PubMed  Google Scholar 

  105. Yamamoto S, Fukumoto E, Yoshizaki K, Iwamoto T, Yamada A, Tanaka K, Suzuki H, Aizawa S, Arakaki M, Yuasa K, Oka K, Chai Y, Nonaka K, Fukumoto S. Platelet-derived growth factor receptor regulates salivary gland morphogenesis via fibroblast growth factor expression. J Biol Chem. 2008;283(34):23139–49. doi:10.1074/jbc.M710308200.

    Article  PubMed  Google Scholar 

  106. Yan X, Liu Y, Han Q, Jia M, Liao L, Qi M, Zhao RC. Injured microenvironment directly guides the differentiation of engrafted Flk-1(+) mesenchymal stem cell in lung. Exp Hematol. 2007;35(9):1466–75. doi:10.1016/j.exphem.2007.05.012.

    Article  PubMed  Google Scholar 

  107. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature. 2000;407(6801):242–8. doi:10.1038/35025215.

    Article  PubMed  Google Scholar 

  108. Yun EJ, Lorizio W, Seedorf GJ, Abman SH, Vu TH. VEGF and endothelium-derived retinoic acid regulate lung vascular and alveolar development. Am J Physiol Lung Cell Mol Physiol:ajplung. 2015;00229:02015. doi:10.1152/ajplung.00229.2015.

    Google Scholar 

  109. Zheng C, Cotrim AP, Rowzee A, Swaim W, Sowers A, Mitchell JB, Baum BJ. Prevention of radiation-induced salivary hypofunction following hKGF gene delivery to murine submandibular glands. Clin Cancer Res. 2011;17(9):2842–51. doi:10.1158/1078-0432.CCR-10-2982.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I thank Dr. Wendy Knosp and Dr. Matthew Hoffman (National Institute for Dental and Craniofacial Research, NIH, DHHS, USA) for critical proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle M. A. Lombaert PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lombaert, I.M.A. (2017). Implications of Salivary Gland Developmental Mechanisms for the Regeneration of Adult Damaged Tissues. In: Cha, S. (eds) Salivary Gland Development and Regeneration. Springer, Cham. https://doi.org/10.1007/978-3-319-43513-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43513-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43511-4

  • Online ISBN: 978-3-319-43513-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics