Skip to main content

Data-Driven Feedforward Decoupling Filter Design for Parallel Nanopositioning Stages

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9834))

Included in the following conference series:

Abstract

Cross-coupling effect severely hinder fast and accurate tracking for parallel piezo nanopositioning stages. In this paper, a data-driven feedforward decoupling filter (DDFDF) is proposed to reduce the cross-coupling caused errors. Traditional control methods for coupled system could achieve good performance on the premise that the dynamic model is accurate and no non-minimum phase zeros exist. The proposed method is totally data-driven with the advantage of no need for accurate identified model and model structure by Gauss-Newton gradient-based algorithm. The DDFDF for eliminating cross-coupling errors was verified on a 2-DOF coupled nanopositioning stage through simulations. Results show the effectiveness of the proposed controller by comparing with open-loop simulations and the well-designed feedback controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Devasia, S., Eleftheriou, E., Moheimani, S.O.R.: A survey of control issues in nanopositioning. IEEE Trans. Control Syst. Technol. 15(5), 802–823 (2007)

    Article  Google Scholar 

  2. Salapaka, S.M., Salapaka, M.V.: Scanning probe microscopy. IEEE Control Syst. 28(2), 65–83 (2008)

    Article  Google Scholar 

  3. Binnig, G., Quate, C.F., Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56(9), 930 (1986)

    Article  Google Scholar 

  4. Rakotondrabe, M., Haddab, Y., Lutz, P.: Development, modeling, and control of a micro-/nanopositioning 2-DOF stick–slip device. IEEE/ASME Trans. Mechatron. 14(6), 733–745 (2009)

    Article  Google Scholar 

  5. Yong, Y.K., Moheimani, S.O.R., Kenton, B.J., et al.: Invited review article: High-speed flexure-guided nanopositioning: Mechanical design and control issues. Rev. Sci. Instrum. 83(12), 121101 (2012)

    Article  Google Scholar 

  6. Kenton, B.J., Leang, K.K.: Design and control of a three-axis serial-kinematic high-bandwidth nanopositioner. IEEE/ASME Trans. Mechatron. 17(2), 356–369 (2012)

    Article  Google Scholar 

  7. Bhikkaji, B., Ratnam, M., Moheimani, S.O.R.: PVPF control of piezoelectric tube scanners. Sens. Actuators A 135(2), 700–712 (2007)

    Article  Google Scholar 

  8. Li, Y., Xu, Q.: Development and assessment of a novel decoupled XY parallel micropositioning platform. IEEE/ASME Trans. Mechatron. 15(1), 125–135 (2010)

    Article  Google Scholar 

  9. Yao, Q., Dong, J., Ferreira, P.M.: Design, analysis, fabrication and testing of a parallel-kinematic micropositioning XY stage. Int. J. Mach. Tools Manuf. 47(6), 946–961 (2007)

    Article  Google Scholar 

  10. Das, S.K., Pota, H.R., Petersen, I.R.: Multivariable negative-imaginary controller design for damping and cross coupling reduction of nanopositioners: a reference model matching approach. IEEE/ASME Trans. Mechatron. 20(6), 3123–3134 (2015)

    Article  Google Scholar 

  11. Das, S.K., Pota, H.R., Petersen, I.R.: A MIMO double resonant controller design for nanopositioners. IEEE Trans. Nanotechnol. 14(2), 224–237 (2015)

    Article  Google Scholar 

  12. Das, S.K., Pota, H.R., Petersen, I.R.: Resonant controller design for a piezoelectric tube scanner: a mixed negative-imaginary and small-gain approach. IEEE Trans. Control Syst. Technol. 22(5), 1899–1906 (2014)

    Article  Google Scholar 

  13. Yong, Y.K., Liu, K., Moheimani, S.O.R.: Reducing cross-coupling in a compliant XY nanopositioner for fast and accurate raster scanning. IEEE Trans. Control Syst. Technol. 18(5), 1172–1179 (2010)

    Article  Google Scholar 

  14. Hjalmarsson, H., Gevers, M., Gunnarsson, S., et al.: Iterative feedback tuning: theory and applications. IEEE Control Syst. 18(4), 26–41 (1998)

    Article  Google Scholar 

  15. Hjalmarsson, H.: Efficient tuning of linear multivariable controllers using iterative feedback tuning. Int. J. Adapt. Control Signal Process. 13(7), 553–572 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Campi, M.C., Lecchini, A., Savaresi, S.M.: Virtual reference feedback tuning: a direct method for the design of feedback controllers. Automatica 38(8), 1337–1346 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Campi, M.C., Lecchini, A., Savaresi, S.M.: An application of the virtual reference feedback tuning method to a benchmark problem. Eur. J. Control 9(1), 66–76 (2003)

    Article  MATH  Google Scholar 

  18. Zheng, J., Guo, G., Wang, Y.: Feedforward decoupling control design for dual-actuator system in hard disk drives. IEEE Trans. Magn. 40(4), 2080–2082 (2004)

    Article  Google Scholar 

  19. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  20. Teo, Y.R., Eielsen, A.A., Gravdahl, J.T., et al.: Discrete-time repetitive control with model-less FIR filter inversion for high performance nanopositioning. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1664–1669 (2014)

    Google Scholar 

  21. Hu, C., Yao, B., Wang, Q.: Coordinated adaptive robust contouring control of an industrial biaxial precision gantry with cogging force compensations. IEEE Trans. Industr. Electron. 57(5), 1746–1754 (2010)

    Article  Google Scholar 

  22. Chen, C.S., Chen, L.Y.: Robust cross-coupling synchronous control by shaping position commands in multiaxes system. IEEE Trans. Industr. Electron. 59(12), 4761–4773 (2012)

    Article  Google Scholar 

  23. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design. Wiley, New York (2007)

    MATH  Google Scholar 

  24. Huusom, J.K., Poulsen, N.K., Jørgensen, S.B.: Improving convergence of iterative feedback tuning. J. Process Control 19(4), 570–578 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This research was sponsored by National Natural Science Foundation of China (NSFC, Grant No.51375349).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Feng, Z., Ling, J., Ming, M., Xiao, X. (2016). Data-Driven Feedforward Decoupling Filter Design for Parallel Nanopositioning Stages. In: Kubota, N., Kiguchi, K., Liu, H., Obo, T. (eds) Intelligent Robotics and Applications. ICIRA 2016. Lecture Notes in Computer Science(), vol 9834. Springer, Cham. https://doi.org/10.1007/978-3-319-43506-0_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43506-0_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43505-3

  • Online ISBN: 978-3-319-43506-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics