Accelerating Humanoid Robot Learning from Human Action Skills Using Context-Aware Middleware

  • Charles C. PhiriEmail author
  • Zhaojie JuEmail author
  • Honghai Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9834)


In this paper we propose the creation of context-aware middleware to solve the challenge of integrating disparate incompatible systems involved in the teaching of human action skills to robots. Context-aware middleware provides the solution to retrofitting capabilities onto existing robots (agents) and bridges the technology differences between systems. The experimental results demonstrate a framework for handling situational and contextual data for robot Learning from Demonstration.


Context-aware middleware JSON-LD SLAM 



The authors would like to acknowledge support from DREAM project of EU FP7-ICT (grant no. 611391), Research Project of State Key Laboratory of Mechanical System and Vibration China (grant no. MSV201508), and National Natural Science Foundation of China (grant no. 51575412).


  1. 1.
    Ahmad, A., et al.: Cooperative robot localization and target tracking based on least squares minimization. In: 2013 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2013)Google Scholar
  2. 2.
    Aldebaran. NAO Documentation (2016). Accessed 09 Mar 2016
  3. 3.
    Babu, A.K.A., Sivakumar, R.: Development of type 2 fuzzy rough ontology-based middleware for context processing in ambient smart environment. In: Mandal, D., Kar, R., Das, S., Panigrahi, B.K. (eds.) Intelligent Computing and Applications. Advances in Intelligent Systems and Computing, vol. 343, pp. 137–143. Springer, India (2015)Google Scholar
  4. 4.
    Billard, A., Grollman, D.: Robot learning by demonstration. Scholarpedia 8(12), 24–38 (2013)CrossRefGoogle Scholar
  5. 5.
    Cheng, L., et al.: Design and implementation of human-robot interactive demonstration system based on Kinect. In: 2012 24th Chinese Control and Decision Conference (CCDC). IEEE (2012)Google Scholar
  6. 6.
    Corporation, i. MQ - The Guide -MQ - The Guide (2014). Accessed 03 Apr 2016
  7. 7.
    Developer, G. Google I/O 2015 - A little badass. Beautiful. Tech and human. Work and love, ATAP (2015)Google Scholar
  8. 8.
    Google. Google’s Project Tango (2016). Accessed 04 Apr 2016
  9. 9.
    Hopfield, J.J.: Hopfield network. Scholarpedia 2(5), 1977 (2007)CrossRefGoogle Scholar
  10. 10.
    JSON-LD. JSON for Linking Data (2016). Accessed 03 Apr 2016
  11. 11.
    Kim, H., et al.: A middleware supporting context-aware services for network-based robots. In: IEEE Workshop on Advanced Robotics and its Social Impacts. IEEE (2005)Google Scholar
  12. 12.
    Kohlbrecher, S., et al.: Humanrobot teaming for rescue missions: team ViGIR’s approach to the 2013 DARPA robotics challenge trials. J. Field Robot. 32(3), 352–377 (2015)CrossRefGoogle Scholar
  13. 13.
    Li, R., et al.: Towards ROS based multi-robot architecture for ambient assisted living. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE (2013)Google Scholar
  14. 14.
    Li, X., et al.: Context aware middleware architectures: survey and challenges. Sensors 15(8), 20570–20607 (2015). (Basel)CrossRefGoogle Scholar
  15. 15.
    Lin, B.-S.P., et al.: The roles of 5G mobile broadband in the development of IoT, big data, cloud and SDN. Commun. Netw. 8(01), 9 (2016)CrossRefGoogle Scholar
  16. 16.
    Murray, D., et al.: An experimental comparison of routing protocols in multi hop ad hoc networks. In: 2010 Australasian Telecommunication Networks and Applications Conference (ATNAC). IEEE (2010)Google Scholar
  17. 17.
    Newmeyer, N.: Changing the future of cyber-situational awareness. Warfare 14, 32–41 (2015)Google Scholar
  18. 18. Software-Defined Networking (SDN) Definition - Open Networking Foundation (2016). Accessed 01 Apr 2016
  19. 19.
    Perera, C., et al.: Context aware computing for the internet of things: a survey. IEEE Commun. Surv. tutorials 16(1), 414–454 (2014)CrossRefGoogle Scholar
  20. 20.
    Research, B.: M2M world of connected services: Internet of Things (2011)Google Scholar
  21. 21.
    Rutishauser, S., et al.: Collaborative coverage using a swarm of networked miniature robots. Robot. Auton. Syst. 57(5), 517–525 (2009)CrossRefGoogle Scholar
  22. 22.
    Stachniss, C.: Introduction to robot mapping. SLAM-Course (2014)Google Scholar
  23. 23.
    Thrun, S., et al.: Probabilistic Robotics. MIT press, Cambridge (2005)zbMATHGoogle Scholar
  24. 24.
    Ju, Z., Liu, H.: Fuzzy Gaussian mixture models. Pattern Recogn. 45(3), 114–115 (2012)CrossRefzbMATHGoogle Scholar
  25. 25.
    Ju, Z., Li, J.,Liu, H.: An integrative framework for human hand gesture segmentation in RGB-D Data. IEEE Syst. J. (in press). doi: 10.1109/JSYST.2015.2468231 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of ComputingUniversity of PortsmouthPortsmouthUK

Personalised recommendations