A Rotating Platform for Swift Acquisition of Dense 3D Point Clouds

  • Tobias Neumann
  • Enno Dülberg
  • Stefan Schiffer
  • Alexander Ferrein
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9834)

Abstract

For mapping with mobile robots the fast acquisition of dense point clouds is important. Different sensor techniques and devices exist for different applications. In this paper, we present a novel platform for rotating 3D and 2D LiDAR sensors. It allows for swiftly capturing 3D scans that are densely populated and that almost cover a full sphere. While the platform design is generic and many common LRF can be mounted on it, in our setup we use a Velodyne VLP-16 PUCK LiDAR as well as a Hokuyo UTM-30LX-EW LRF to acquire distance measurements. We describe the hardware design as well as the control software. We further compare our system with other existing commercial and non-commercial designs, especially with the FARO Focus3D X 130.

Notes

Acknowledgments

This work was funded in part by the German Federal Ministry of Education and Research in the programme under grant 033R126C. We thank the anonymous reviewers for their helpful comments and Christoph Gollok for the simulation of the point distribution in Gazebo.

References

  1. 1.
    Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)CrossRefGoogle Scholar
  2. 2.
    Bohren, J., Rusu, R.B., Jones, E.G., Marder-Eppstein, E., Pantofaru, C., Wise, M., Mösenlechner, L., Meeussen, W., Holzer, S.: Towards autonomous robotic butlers: Lessons learned with the PR2. In: IEEE International Conference on Robotics and Automation (ICRA), May 2011Google Scholar
  3. 3.
    Früh, C., Zakhor, A.: 3D model generation for cities using aerial photographs and ground level laser scans. In: Proceedings of the Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2 (2001)Google Scholar
  4. 4.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press (2003)Google Scholar
  5. 5.
    Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Robots 34, 189–206 (2013)CrossRefGoogle Scholar
  6. 6.
    Leingartner, M., Maurer, J., Ferrein, A., Steinbauer, G.: Evaluation of sensors and mapping approaches for disasters in tunnels. J. Field Robot. (2015)Google Scholar
  7. 7.
    Neumann, T., Ferrein, A., Kallweit, S., Scholl, I.: Towards a mobile mapping robot for underground mines. In: Proceedings of the 7th IEEE Robotics and Mechatronics Conference (2014)Google Scholar
  8. 8.
    Nüchter, A., Borrmann, D., Koch, P., Kühn, M., May, S.: A man-portable IMU-free mobile mapping system. In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. II-3/W5 (2015)Google Scholar
  9. 9.
    Nüchter, A., Lingemann, K., Hertzberg, J., Surmann, H.: 6D SLAM-3D mapping outdoor environments. J. Field Robot. 24, 699–722 (2007)CrossRefMATHGoogle Scholar
  10. 10.
    Nüchter, A.: 3D Robotic Mapping. STAR, vol. 52. Springer, Heidelberg (2008)MATHGoogle Scholar
  11. 11.
    Oberländer, J., Pfotzer, L., Roennau, A., Dillmann, R.: Fast calibration of rotating and swivelling 3-D laser scanners exploiting measurement redundancies. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS) (2015)Google Scholar
  12. 12.
    Pomerleau, F., Colas, F., Siegwart, R.: A review of point cloud registration algorithms for mobile robotics. Found. Trends Robot. 4(1), 1–104 (2015)CrossRefGoogle Scholar
  13. 13.
    Schadler, M., Stückler, J., Behnke, S.: Multi-resolution surfel mapping and real-time pose tracking using a continuously rotating 2D laser scanner. In: International Symposium on Safety, Security, and Rescue Robotics (SSRR) (2013)Google Scholar
  14. 14.
    Surmann, H., Lingemann, K., Nüchter, A., Hertzberg, J.: A 3D laser range finder for autonomous mobile robots. In: Proceedings of the 32nd International Symposium on Robotics (ISR) (2001)Google Scholar
  15. 15.
    Thrun, S., Thayer, S., Whittaker, W., Baker, C., Burgard, W., Ferguson, D., Hahnel, D., Montemerlo, D., Morris, A., Omohundro, Z., Reverte, C., Whittaker, W.: Autonomous exploration and mapping of abandoned mines. IEEE Robot. Autom. Mag. 11(4), 79–91 (2004)CrossRefGoogle Scholar
  16. 16.
    Wong, U., Morris, A., Lea, C., Lee, J., Whittaker, C., Garney, B., Whittaker, R.: Comparative evaluation of range sensing technologies for underground void modeling. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS) (2011)Google Scholar
  17. 17.
    Wulf, O., Nüchter, A., Hertzberg, J., Wagner, B.: Ground truth evaluation of large urban 6D SLAM. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS) (2007)Google Scholar
  18. 18.
    Wulf, O., Wagner, B.: Fast 3D scanning methods for laser measurement systems. In: Proceedings of the International Conference on Control Systems and Computer Science (2003)Google Scholar
  19. 19.
    Zhao, H., Shibasaki, R.: Reconstructing textured cad model of urban environmentusing vehicle-borne laser range scanners and line cameras. In: Second International Workshop on Computer Vision System (ICVS) (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Tobias Neumann
    • 1
  • Enno Dülberg
    • 1
  • Stefan Schiffer
    • 1
  • Alexander Ferrein
    • 1
  1. 1.Mobile Autonomous Systems and Cognitive Robotics (MASCOR) InstituteFH Aachen University of Applied SciencesAachenGermany

Personalised recommendations