Skip to main content

Modular Neural Control for Object Transportation of a Bio-inspired Hexapod Robot

  • Conference paper
  • First Online:
Book cover From Animals to Animats 14 (SAB 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9825))

Included in the following conference series:

  • 1243 Accesses

Abstract

Insects, like dung beetles, can perform versatile motor behaviors including walking, climbing an object (i.e., dung ball), as well as manipulating and transporting it. To achieve such complex behaviors for artificial legged systems, we present here modular neural control of a bio-inspired hexapod robot. The controller utilizes discrete-time neurodynamics and consists of seven modules based on three generic neural networks. One is a neural oscillator network serving as a central pattern generator (CPG) which generates basic rhythmic patterns. The other two networks are so-called velocity regulating and phase switching networks. They are used for regulating the rhythmic patterns and changing their phase. As a result, the modular neural control enables the hexapod robot to walk and climb a large cylinder object with a diameter of 18 cm (i.e., \(\approx 2.8\) times the robot’s body height). Additionally, it can also generate different hind leg movements for different object manipulation modes, like soft and hard pushing. Combining these pushing modes, the robot can quickly transport the object across an obstacle with a height up to 10 cm (i.e., \(\approx 1.5\) times the robot’s body height). The controller was developed and evaluated using a physical simulation environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These networks have been successfully applied for locomotion control of various robot systems [1416]. They are, for the first time here, employed for locomotion and object manipulation and transportation of a bio-inspired hexapod robot.

  2. 2.

    See http://manoonpong.com/SAB2016/V1.mp4.

  3. 3.

    See http://manoonpong.com/SAB2016/V2.mp4.

  4. 4.

    see http://manoonpong.com/SAB2016/V3.mp4.

References

  1. Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like animals. Nature 521, 503–507 (2015)

    Article  Google Scholar 

  2. Inoue, K., Fujii, S., Takubo, T., Mae, Y., Arai, T.: Ladder climbing method for the limb mechanism robot asterisk. Adv. Robot. 24, 1557–1576 (2010)

    Article  Google Scholar 

  3. Crespi, A., Karakasiliotis, K., Guignard, A., Ijspeert, A.J.: Salamandra robotica II: an amphibious robot to study salamander-like swimming and walking gaits. IEEE Trans. Robot. 29, 308–320 (2013)

    Article  Google Scholar 

  4. Bartsch, S., Planthaber, S.: Scarabaeus: a walking robot applicable to sample return missions. In: Gottscheber, A., Enderle, S., Obdrzalek, D. (eds.) EUROBOT 2008. CCIS, vol. 33, pp. 128–133. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Rehman, B.U., Focchi, M., Frigerio, M., Goldsmith, J., Caldwell, D.G., Semini, C.: Design of a hydraulically actuated arm for a quadruped robot. In: Proceedings of the International Conference on Climbing and Walking Robots, pp. 283–290 (2015)

    Google Scholar 

  6. Heppner, G., Buettner, T., Roennau, A., Dillmann, R.: Versatile - high power gripper for a six legged walking robot. In: Proceedings of the International Conference on Climbing and Walking Robots, pp. 461–468 (2014)

    Google Scholar 

  7. Koyachi, N., Adachi, H., Arai, T., Izumi, M., Hirose, T., Senjo, N., Murata, R.: Walk and manipulation by a hexapod with integrated limb mechanism of leg and arm. J. Robot. Soc. Jpn. 22, 411–421 (2004)

    Article  Google Scholar 

  8. Inoue, K., Ooe, K., Lee, S.: Pushing methods for working six-legged robots capable of locomotion and manipulation in three modes. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 4742–4748 (2010)

    Google Scholar 

  9. Takeo, G., Takubo, T., Ohara, K., Mae, Y., Arai, T.: Internal force control for rolling operation of polygonal prism. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics, pp. 586–591 (2009)

    Google Scholar 

  10. Philips, T.K., Pretorius, E., Scholtz, C.H.: A phylogenetic analysis of dung beetles (Scarabaeinae): unrolling an evolutionary history. Invertebr. Syst. 18, 53–88 (2004)

    Article  Google Scholar 

  11. Bässler, U., Büschges, A.: Pattern generation for stick insect walking movements-multisensory control of a locomotor program. Brain Res. Rev. 27, 65–88 (1998)

    Article  Google Scholar 

  12. Valsalam, V., Miikkulainen, R.: Modular neuroevolution for multilegged locomotion. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 265–272 (2008)

    Google Scholar 

  13. Hornby, G., Takamura, S., Yamamoto, T., Fujita, M.: Autonomous evolution of dynamic gaits with two quadruped robots. IEEE Trans. Robot. Autom. 21, 402–410 (2005)

    Article  Google Scholar 

  14. Manoonpong, P., Wörgötter, F., Laksanacharoen, P.: Biologically inspired modular neural control for a leg-wheel hybrid robot. Adv. Robot. Res. 1, 101–126 (2014)

    Article  Google Scholar 

  15. Manoonpong, P., Pasemann, F., Wörgötter, F.: Sensor-driven neural control for omnidirectional locomotion and versatile reactive behaviors of walking machines. Robot. Auton. Syst. 56, 265–288 (2008)

    Article  Google Scholar 

  16. Grinke, E., Tetzlaff, C., Wörgötter, F., Manoonpong, P.: Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot. Front. Neurorobot. 9, 1–15 (2015). doi:10.3389/fnbot.2015.00011

    Article  Google Scholar 

  17. Pasemann, F., Hild, M., Zahedi, K.: So(2)-networks as neural oscillators. In: Proceedings of 7th International Work-Conference on Artificial and Natural Neural Networks (IWANN 2003), pp. 1042–1042 (2003)

    Google Scholar 

Download references

Acknowledgments

We would like to thank Georg Martius for technical advise about the LpzRobots simulation software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poramate Manoonpong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Sørensen, C.T.L., Manoonpong, P. (2016). Modular Neural Control for Object Transportation of a Bio-inspired Hexapod Robot. In: Tuci, E., Giagkos, A., Wilson, M., Hallam, J. (eds) From Animals to Animats 14. SAB 2016. Lecture Notes in Computer Science(), vol 9825. Springer, Cham. https://doi.org/10.1007/978-3-319-43488-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43488-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43487-2

  • Online ISBN: 978-3-319-43488-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics