Co-exploring Actuator Antagonism and Bio-inspired Control in a Printable Robot Arm

  • Martin F. Stoelen
  • Fabio Bonsignorio
  • Angelo Cangelosi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9825)

Abstract

The human arm is capable of performing fast targeted movements with high precision, say in pointing with a mouse cursor, but is inherently ‘soft’ due to the muscles, tendons and other tissues of which it is composed. Robot arms are also becoming softer, to enable robustness when operating in real-world environments, and to make them safer to use around people. But softness comes at a price, typically an increase in the complexity of the control required for a given task speed/accuracy requirement. Here we explore how fast and precise joint movements can be simply and effectively performed in a soft robot arm, by taking inspiration from the human arm. First, viscoelastic actuator-tendon systems in an agonist-antagonist setup provide joints with inherent damping, and stiffness that can be varied in real-time through co-contraction. Second, a light-weight and learnable inverse model for each joint enables a fast ballistic phase that drives the arm close to a desired equilibrium point and co-contraction tuple, while the final adjustment is done by a feedback controller. The approach is embodied in the GummiArm, a robot which can almost entirely be printed on hobby-grade 3D printers. This enables rapid and iterative co-exploration of ‘brain’ and ‘body’, and provides a great platform for developing adaptive and bio-inspired behaviours.

Keywords

Bio-inspiration Learnable models Agonist-antagonist joints Variable stiffness 3D printing Targeted movements 

References

  1. 1.
    Flash, T.: The control of hand equilibrium trajectories in multi-joint arm movements. Biol. Cybern. 57(4–5), 257–274 (1987)CrossRefMATHGoogle Scholar
  2. 2.
    Kistemaker, D.A., Van Soest, A.K.J., Bobbert, M.F.: Is equilibrium point control feasible for fast goal-directed single-joint movements? J. Neurophysiol. 95(5), 2898–2912 (2006)CrossRefGoogle Scholar
  3. 3.
    Gribble, P.L., Mullin, L.I., Cothros, N., Mattar, A.: Role of cocontraction in arm movement accuracy. J. Neurophysiol. 89(5), 2396–2405 (2003)CrossRefGoogle Scholar
  4. 4.
    Wolpert, D.M., Miall, R.C., Kawato, M.: Internal models in the cerebellum. Trends Cogn. Sci. 2(9), 338–347 (1998)CrossRefGoogle Scholar
  5. 5.
    Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015)CrossRefGoogle Scholar
  6. 6.
    Pfeifer, R., Lungarella, M., Iida, F.: The challenges ahead for bio-inspired ‘soft’ robotics. Commun. ACM 55(11), 76–87 (2012)CrossRefGoogle Scholar
  7. 7.
    Mazzolai, B., Margheri, L., Cianchetti, M., Dario, P., Laschi, C.: “Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspiration Biomimetics 7(2), 025005 (2012)CrossRefGoogle Scholar
  8. 8.
    Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 1, pp. 399–406 (1995)Google Scholar
  9. 9.
    Quigley, M., Asbeck, A., Ng, A.: A low-cost compliant 7-DOF robotic manipulator. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 6051–6058, May 2011Google Scholar
  10. 10.
    Vanderborght, B., et al.: Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013)CrossRefGoogle Scholar
  11. 11.
    Bicchi, A., Tonietti, G., Bavaro, M., Piccigallo, M.: Variable stiffness actuators for fast and safe motion control. In: Dario, P., Chatila, R. (eds.) The Eleventh International Symposium on Robotics Research. STAR, vol. 15, pp. 527–536. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Catalano, M.G., Grioli, G., Garabini, M., Bonomo, F., Mancini, M., Tsagarakis, N., Bicchi, A.: VSA-CubeBot: a modular variable stiffness platform for multiple degrees of freedom robots. In: IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, pp. 5090–5095 (2011)Google Scholar
  13. 13.
    Grebenstein, M., et al.: The DLR hand arm system. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3175–3182 (2011)Google Scholar
  14. 14.
    Petit, F., Dietrich, A., Albu-Schaffer, A.: Generalizing torque control concepts: using well-established torque control methods on variable stiffness robots. IEEE Robot. Autom. Mag. 22(4), 37–51 (2015)CrossRefGoogle Scholar
  15. 15.
    Radulescu, A., Howard, M., Braun, D.J., Vijayakumar, S.: Exploiting variable physical damping in rapid movement tasks. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 141–148 (2012)Google Scholar
  16. 16.
    Kashiri, N., Tsagarakis, N.G., Van Damme, M., Vanderborght, B., Caldwell, D.G.: Proxy-based sliding mode control of compliant joint manipulators. In: Filipe, J., Gusikhin, O., Madani, K., Sasiadek, J. (eds.) Informatics in Control, Automation and Robotics. Lecture Notes in Electrical Engineering, vol. 370, pp. 241–257. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  17. 17.
    Cangelosi, A., Schlesinger, M.: Developmental Robotics: From Babies to Robots. MIT Press, Cambridge (2015)Google Scholar
  18. 18.
    Pfeifer, R., Marques, H.G., Iida, F.: Soft robotics: the next generation of intelligent machines. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp. 5–11 (2013)Google Scholar
  19. 19.
    Metta, G., Sandini, G., Vernon, D., Natale, L., Nori, F.: The iCub humanoid robot: an open platform for research in embodied cognition. In: Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems, pp. 50–56 (2008)Google Scholar
  20. 20.
    Petit, F., Ott, C., Albu-Schaffer, A.: A model-free approach to vibration suppression for intrinsically elastic robots. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2176–2182 (2014)Google Scholar
  21. 21.
    Lapeyre, M., Rouanet, P., Grizou, J., Nguyen, S., Depraetre, F., et al.: Poppy Project: Open-Source Fabrication of 3D Printed Humanoid Robot for Science, Education and Art, Digital Intelligence 2014, September 2014, Nantes, France, p. 6 (2014). https://hal.inria.fr/hal-01096338
  22. 22.
    NASA, Man-Systems Integration Standards - Revison B. National Aeronautics, Space Administration: Houston, USA (1995). http://msis.jsc.nasa.gov/
  23. 23.
    Chou, C.P., Hannaford, B.: Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Trans. Rob. Autom. 12(1), 90–102 (1996)CrossRefGoogle Scholar
  24. 24.
    Ham, R.V., Sugar, T.G., Vanderborght, B., Hollander, K.W., Lefeber, D.: Compliant actuator designs. IEEE Rob. Autom. Mag. 16(3), 81–94 (2009)CrossRefGoogle Scholar
  25. 25.
    Hallett, M.A.R.K., Marsden, C.D.: Ballistic flexion movements of the human thumb. J. Physiol. 294, 33–50 (1979)CrossRefGoogle Scholar
  26. 26.
    Grioli, G., et al.: Variable stiffness actuators: the user’s point of view. Int. J. Rob. Res. 34(6), 727–743 (2015)CrossRefGoogle Scholar
  27. 27.
    Bruyninckx, H.: Open robot control software: the OROCOS project. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2523–2528 (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Martin F. Stoelen
    • 1
  • Fabio Bonsignorio
    • 2
  • Angelo Cangelosi
    • 1
  1. 1.Centre for Robotics and Neural SystemsPlymouth UniversityPlymouthUK
  2. 2.The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa and Heron RobotsGenovaItaly

Personalised recommendations