Advertisement

Molecular Mechanisms of Cardiovascular Aging

  • Francesca TarantiniEmail author
  • Claudia Di Serio
  • Luigi Ferrucci
Chapter

Abstract

A number of functional and anatomical changes occur in the heart and vessels with age.

Keywords

Reactive Oxygen Species Telomere Length Caloric Restriction Cellular Senescence Cardiovascular Aging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. 1.
    Taddei S, Virdis A, Ghiadoni L, Salvetti G, Bernini G, Magagna A, Salvetti A. Age-related reduction of NO availability and oxidative stress in humans. Hypertension. 2001;38:274–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Csiszar A, Ungvari Z, Koller A, Edwards JG, Kaley G. Aging-induced proinflammatory shift in cytokine expression profile in rat coronary arteries. FASEB J. 2003;17:1183–5.PubMedGoogle Scholar
  3. 3.
    Camici GG, Shi Y, Cosentino F, Francia P, Luscher TF. Anti-aging medicine: molecular basis for endothelial cell-targeted strategies - a mini-review. Gerontology. 2011;57:101–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Lahteenvuo J, Rosenzweig A. Effects of aging on angiogenesis. Circ Res. 2012;110:1252–64.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Williamson K, Stringer SE, Alexander MY. Endothelial progenitor cells enter the aging arena. Front Physiol. 2012;3:30.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Xia WH, Li J, Su C, Yang Z, Chen L, Wu F, Zhang YY, Yu BB, Qiu YX, Zang SM, Tao J. Physical exercise attenuates age-associated reduction in endothelium-reparative capacity of endothelial progenitor cells by increasing CXCR4/JAK-2 signaling in healthy men. Aging Cell. 2012;11:111–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Sussman MA, Anversa P. Myocardial aging and senescence: where have the stem cells gone? Annu Rev Physiol. 2004;66:29–48.PubMedCrossRefGoogle Scholar
  8. 8.
    Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300.PubMedCrossRefGoogle Scholar
  9. 9.
    Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc. 1972;20:145–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A. 1997;94:514–9.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Gonzalez-Freire M, de Cabo R, Bernier M, Sollott SJ, Fabbri E, Navas P, Ferrucci L. Reconsidering the role of mitochondria in aging. J Gerontol Med Sci. 2015;70:1334–42.CrossRefGoogle Scholar
  12. 12.
    Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120:483–95.PubMedCrossRefGoogle Scholar
  13. 13.
    Fannin SW, Lesnefsky EJ, Slabe TJ, Hassan MO, Hoppel CL. Aging selectively decreases oxidative capacity in rat heart interfibrillar mitochondria. Arch Biochem Biophys. 1999;372:399–407.PubMedCrossRefGoogle Scholar
  14. 14.
    Ehsani AA, Spina RJ, Peterson LR, Rinder MR, Glover KL, Villareal DT, Binder EF, Holloszy JO. Attenuation of cardiovascular adaptations to exercise in frail octogenarians. J Appl Physiol. 2003;95:1781–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Petrosillo G, Matera M, Moro N, Ruggiero FM, Paradies G. Mitochondrial complex I dysfunction in rat heart with aging: critical role of reactive oxygen species and cardiolipin. Free Radic Biol Med. 2009;46:88–94.PubMedCrossRefGoogle Scholar
  16. 16.
    Choksi KB, Nuss JE, DeFord JH, Papaconstantinou J. Age-related alterations in oxidatively damaged proteins of mouse skeletal muscle mitochondrial electron transport chain complexes. Free Radic Biol Med. 2008;45:826–38.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Dai DF, Rabinovitch PS, Ungvari Z. Mitochondria and cardiovascular aging. Circ Res. 2012;110:1109–24.PubMedCrossRefGoogle Scholar
  18. 18.
    Dutta D, Calvani R, Bernabei R, Leeuwenburgh C, Marzetti E. Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities. Circ Res. 2012;110:1125–38.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Ladiges W, Coskun PE, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science. 2005;308:1909–11.PubMedCrossRefGoogle Scholar
  20. 20.
    Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly YM, Gidlof S, Oldfors A, Wibom R, Tornell J, Jacobs HT, Larsson NG. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429:417–23.PubMedCrossRefGoogle Scholar
  21. 21.
    Dai DF, Chen T, Wanagat J, Laflamme M, Marcinek DJ, Emond MJ, Ngo CP, Prolla TA, Rabinovitch PS. Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria. Aging Cell. 2010;9:536–44.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Safdar A, Bourgeois JM, Ogborn DI, Little JP, Hettinga BP, Akhtar M, Thompson JE, Melov S, Mocellin NJ, Kujoth GC, Prolla TA, Tarnopolsky MA. Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice. Proc Natl Acad Sci U S A. 2011;108:4135–40.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, Lanfrancone L, Pelicci PG. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature. 1999;402:309–13.PubMedCrossRefGoogle Scholar
  24. 24.
    Francia P, Cosentino F, Schiavoni M, Huang Y, Perna E, Camici GG, Luscher TF, Volpe M. P66(shc) protein, oxidative stress, and cardiovascular complications of diabetes: the missing link. J Mol Med (Berl). 2009;87:885–91.CrossRefGoogle Scholar
  25. 25.
    Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minucci S, Marcaccio M, Pinton P, Rizzuto R, Bernardi P, Paolucci F, Pelicci PG. Electron transfer between cytochrome c and p66shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell. 2005;122:221–33.PubMedCrossRefGoogle Scholar
  26. 26.
    Csiszar A, Ungvari Z, Edwards JG, Kaminski PM, Wolin MS, Koller A, Kaley G. Aging-induced phenotypic changes and oxidative stress impair coronary arteriolar function. Circ Res. 2002;90:1159–66.PubMedCrossRefGoogle Scholar
  27. 27.
    Ungvari Z, Sonntag WE, Csiszar A. Mitochondria and aging in the vascular system. J Mol Med (Berl). 2010;88:1021–7.CrossRefGoogle Scholar
  28. 28.
    Ungvari ZI, Orosz Z, Labinskyy N, Rivera A, Xiangmin Z, Smith KE, Csiszar A. Increased mitochondrial H2O2 production promotes endothelial nf-kb activation in aged rat arteries. Am J Physiol Heart Circ Physiol. 2007;293:H37–47.PubMedCrossRefGoogle Scholar
  29. 29.
    Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Twig G, Hyde B, Shirihai OS. Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta. 1777;2008:1092–7.Google Scholar
  31. 31.
    Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290:1717–21.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Salminen A, Kaarniranta K. Regulation of the aging process by autophagy. Trends Mol Med. 2009;15:217–24.PubMedCrossRefGoogle Scholar
  33. 33.
    Bergamini E, Cavallini G, Donati A, Gori Z. The role of autophagy in aging – its essential part in the anti-aging mechanism of caloric restriction. Ann N Y Acad Sci. 2007;1114:69–78.PubMedCrossRefGoogle Scholar
  34. 34.
    Rubinsztein DC, Marin G, Kroemer G. Autophagy and aging. Cell. 2011;146:682–95.PubMedCrossRefGoogle Scholar
  35. 35.
    Marzetti E, Csiszar A, Dutta D, Balagopal G, Calvani R, Leeuwenburgh C. Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics. Am J Physiol Heart Circ Physiol. 2013;305:H459–76.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Taneike M, Yamaguchi O, Nakai A, Hikoso S, Takeda T, Mizote I, Oka T, Tamai T, Oyabu J, Murakawa T, Nishida K, Shimizu T, Hori M, Komuro I, Takuji Shirasawa TS, Mizushima N, Otsu K. Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy. 2010;6:600–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, Oyabu J, Murakawa T, Nakayama H, Nishida K, Akira S, Yamamoto A, Komuro I, Otsu K. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature. 2012;485:251–5.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Mann DL. Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res. 2002;91:988–98.PubMedCrossRefGoogle Scholar
  39. 39.
    Ungvari Z, Labinskyy N, Gupte S, Chander PN, Edwards JG, Csiszar A. Dysregulation of mitochondrial biogenesis in vascular endothelial and smooth muscle cells of aged rats. Am J Physiol Heart Circ Physiol. 2008;294:H2121–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Jendrach M, Pohl S, Voth M, Kowald A, Hammerstein P, Bereiter-Hahn J. Morpho-dynamic changes of mitochondria during ageing of human endothelial cells. Mech Ageing Dev. 2005;126:813–21.PubMedCrossRefGoogle Scholar
  41. 41.
    LaRocca TJ, Henson GD, Thorburn A, Sindler AL, Pierce GL, Seals DR. Translational evidence that impaired autophagy contributes to arterial ageing. J Physiol. 2012;590:3305–16.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Blackburn AM, Gall JG. A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tatrahymena. J Mol Biol. 1978;120:33–53.PubMedCrossRefGoogle Scholar
  43. 43.
    Graider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extract. Cell. 1985;43:405–13.CrossRefGoogle Scholar
  44. 44.
    Fitzpatrick AL, Kronmal RA, Gardner JP, Psaty BM, Jenny NS, Tracy RP, Walston J, Kimura M, Aviv A. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol. 2007;165:14–21.PubMedCrossRefGoogle Scholar
  45. 45.
    Wilson WR, Herbert KE, Mistry Y, Stevens SE, Patel HR, Hastings RA, Thompson MM, Williams B. Blood leucocyte telomere DNA content predicts vascular telomere DNA content in humans with and without vascular disease. Eur Heart J. 2008;29:2689–94.PubMedCrossRefGoogle Scholar
  46. 46.
    Chang E, Harley CB. Telomere length and replicative aging in human vascular tissues. Proc Natl Acad Sci U S A. 1995;92:11190–4.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation. 2002;105:1541–4.PubMedCrossRefGoogle Scholar
  48. 48.
    Werner C, Furster T, Widmann T, Poss J, Roggia C, Hanhoun M, Scharhag J, Buchner N, Meyer T, Kindermann W, Haendeler J, Bohm M, Laufs U. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation. 2009;120:2438–47.PubMedCrossRefGoogle Scholar
  49. 49.
    Martin-Puig S, Wang Z, Chien KR. Lives of a heart cell: tracing the origins of cardiac progenitors. Cell Stem Cell. 2008;2:320–31.PubMedCrossRefGoogle Scholar
  50. 50.
    Beltrami AP, Urbanek K, Kajstura J, Yan S, Finato N, Bussani R, Nadal-Ginard B, Silvestri F, Leri A, Beltrami CA, Anversa P. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med. 2001;344:1750–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Chimenti C, Kajstura J, Torella D, Urbanek K, Heleniak H, Colussi C, Di Meglio F, Nadal-Ginard B, Frustaci A, Leri A, Maseri A, Anversa P. Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circ Res. 2003;93:604–13.PubMedCrossRefGoogle Scholar
  52. 52.
    Lai L, Leone TC, Zechner C, Schaeffer PJ, Kelly SM, Flanagan DP, Medeiros DM, Kovacs A, Kelly DP. Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. Genes Dev. 2008;22:1948–61.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Leri A, Franco S, Zacheo A, Barlucchi L, Chimenti S, Limana F, Nadal-Ginard B, Kajstura J, Anversa P, Blasco MA. Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation. EMBO J. 2003;22:131–9.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Oh H, Taffet GE, Youker KA, Entman ML, Overbeek PA, Michael LH, Schneider MD. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc Natl Acad Sci U S A. 2011;98:10308–13.CrossRefGoogle Scholar
  55. 55.
    Jaskelioff M, Muller FL, Paik JH, Thomas E, Jiang S, Adams AC, Sahin E, Kost-Alimova M, Protopopov A, Cadinanos J, Horner JW, Maratos-Flier E, Depinho RA. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature. 2011;469:102–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Fontana L, Partridge L, Longo VD. Extending healthy life span–from yeast to humans. Science. 2010;328:321–6.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Cruzen C, Colman RJ. Effects of caloric restriction on cardiovascular aging in non-human primates and humans. Clin Geriatr Med. 2009;25:733–43.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A. 2004;101:6659–63.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Fontana L, Vinciguerra M, Longo VD. Growth factors, nutrient signaling, and cardiovascular aging. Circ Res. 2012;110:1139–50.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Castello L, Froio T, Cavallini G, Biasi F, Sapino A, Leonarduzzi G, Bergamini E, Poli G, Chiarpotto E. Calorie restriction protects against age-related rat aorta sclerosis. FASEB J. 2005;19:1863–5.PubMedGoogle Scholar
  61. 61.
    Rippe C, Lesniewski L, Connell M, LaRocca T, Donato A, Seals D. Short-term calorie restriction reverses vascular endothelial dysfunction in old mice by increasing nitric oxide and reducing oxidative stress. Aging Cell. 2010;9:304–12.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Matsuzaki J, Kuwamura M, Yamaji R, Inui H, Nakano Y. Inflammatory responses to lipopolysaccharide are suppressed in 40 % energy-restricted mice. J Nutr. 2001;131:2139–44.PubMedGoogle Scholar
  63. 63.
    Dhahbi JM, Tsuchiya T, Kim HJ, Mote PL, Spindler SR. Gene expression and physiologic responses of the heart to the initiation and withdrawal of caloric restriction. J Gerontol A Biol Sci Med Sci. 2006;61:218–31.PubMedCrossRefGoogle Scholar
  64. 64.
    Seymour EM, Parikh RV, Singer AA, Bolling SF. Moderate calorie restriction improves cardiac remodeling and diastolic dysfunction in the Dahl-SS rat. J Mol Cell Cardiol. 2006;41:661–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Fontana L, Klein S. Aging, adiposity, and calorie restriction. JAMA. 2007;297:986–94.PubMedCrossRefGoogle Scholar
  66. 66.
    Ash CE, Merry BJ. The molecular basis by which dietary restricted feeding reduces mitochondrial reactive oxygen species generation. Mech Ageing Dev. 2011;132:43–54.PubMedCrossRefGoogle Scholar
  67. 67.
    Speakman JR, Mitchell SE. Caloric restriction. Mol Aspects Med. 2011;32:159–221.PubMedCrossRefGoogle Scholar
  68. 68.
    Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol. 2014;15:155–62.PubMedCrossRefGoogle Scholar
  69. 69.
    Kaeberlein M, Powers RW, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, Kennedy BK. Regulation of yeast replicative life span by TOR and Sch9in response to nutrients. Science. 2005;10:1193–6.CrossRefGoogle Scholar
  70. 70.
    Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Müller F. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature. 2003;26:620–8.CrossRefGoogle Scholar
  71. 71.
    Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. Regulation of lifespan in Drosophila by modulation of genesin the TOR signaling pathway. Curr Biol. 2004;4:885–90.CrossRefGoogle Scholar
  72. 72.
    Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460:392–5.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Menendez JA, Vellon L, Oliveras-Ferraros C, Cufí S, Vazquez-Martin A. mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging. Cell Cycle. 2011;10:3658–77.PubMedCrossRefGoogle Scholar
  74. 74.
    Nair S, Ren J. Autophagy and cardiovascular aging. Lesson learned from rapamycin. Cell Cycle. 2012;11:2092–9.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Argentino DP, Dominici FP, Al-Regaiey K, Bonkowski MS, Bartke A, Turyn D. Effects of long-term caloric restriction on early steps of the insulin-signaling system in mouse skeletal muscle. J Gerontol A Biol Sci Med Sci. 2005;60:28–34.PubMedCrossRefGoogle Scholar
  76. 76.
    Kenyon C. The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Philos Trans R Soc Lond B Biol Sci. 2011;366:9–16.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Alderman JM, Flurkey K, Brooks NL, Naik SB, Gutierrez JM, Srinivas U, Ziara KB, Jing L, Boysen G, Bronson R, Klebanov S, Chen X, Swenberg JA, Stridsberg M, Parker CE, Harrison DE, Combs TP. Neuroendocrine inhibition of glucose production and resistance to cancer in dwarf mice. Exp Gerontol. 2009;44:26–33.PubMedCrossRefGoogle Scholar
  78. 78.
    Lambert AJ, Merry BJ. Effect of caloric restriction on mitochondrial reactive oxygen species production and bioenergetics: reversal by insulin. Am J Physiol Regul Integr Comp Physiol. 2004;286:R71–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Bergamini E, Cavallini G, Donati A, Gori Z. The anti-ageing effects of caloric restriction may involve stimulation of macroautophagy and lysosomal degradation, and can be intensified pharmacologically. Biomed Pharmacother. 2003;57:203–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Fontana L, Weiss EP, Villareal DT, Klein S, Holloszy JO. Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell. 2008;7:681–7.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Milman S, Atzmon G, Huffman DM, Wan J, Crandall JP, Cohen P, Barzilai N. Low insulin-like growth factor-1 level predicts survival in humans with exceptional longevity. Aging Cell. 2014;13:769–71.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Elhadd TA, Abdu TA, Oxtoby J, Kennedy G, McLaren M, Neary R, Belch JJ, Clayton RN. Biochemical and biophysical markers of endothelial dysfunction in adults with hypopituitarism and severe GH deficiency. J Clin Endocrinol Metab. 2001;86:4223–32.PubMedCrossRefGoogle Scholar
  83. 83.
    Li Q, Li B, Wang X, Leri A, Jana KP, Liu Y, Kajstura J, Baserga R, Anversa P. Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J Clin Invest. 1997;100:1991–9.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Torella D, Rota M, Nurzynska D, Musso E, Monsen A, Shiraishi I, Zias E, Walsh K, Sussman MA, Rosenzweigv A, Urbanek K, Nadal-Ginard B, Kajstura J, Anversa P, Leri A. Cardiac stem cell andvmyocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res. 2004;94:514–24.PubMedCrossRefGoogle Scholar
  85. 85.
    Ameri P, Canepa M, Fabbi P, Leoncini G, Milaneschi Y, Mussap M, AlGhatrif M, Balbi M, Viazzi F, Murialdo G, Pontremoli R, Brunelli C, Ferrucci L. Vitamin D modulates the association of circulating insulin-like growth factor-1 with carotid artery intima-media thickness. Atherosclerosis. 2014;236:418–25.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Major JM, Laughlin GA, Kritz-Silverstein D, Wingard DL, Barrett-Connor E. Insulin-like growth factor-I and cancer mortality in older men. J Clin Endocrinol Metab. 2010;95:1054–9.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Maggio M, Cattabiani C, Lauretani F, Bandinelli S, De Vita F, Dall’Aglio E, Corsonello A, Lattanzio F, Paolisso G, Ferrucci L, Ceda GP. Insulin-like growth factor-1 bioactivity plays a prosurvival role in older participants. J Gerontol A Biol Sci Med Sci. 2013;68:1342–50.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Guarente L. Calorie restriction and sirtuins revisited. Genes Dev. 2013;27:2072–85.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13:225–38.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Alcendor RR, Gao SM, Zhai PY, Zablocki D, Holle E, Yu XZ, Tian B, Wagner T, Vatner SF, Sadoshima J. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res. 2007;100:1512–21.PubMedCrossRefGoogle Scholar
  91. 91.
    Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, Hariharan N, Shao D, Takagi H, Oka S, Sadoshima J. Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation. 2010;122:2170–82.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science. 2005;310:314–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Mattagajasingh I, Kim CS, Naqvi A, Yamamori T, Hoffman TA, Jung SB, DeRicco J, Kasuno K, Irani K. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 2007;104:14855–60.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Zhang QJ, Wang Z, Chen HZ, Zhou S, Zheng W, Liu G, Wei YS, Cai H, Liu DP, Liang CC. Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res. 2008;80:191–9.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Warboys CM, de Luca A, Amini N, Luong L, Duckles H, Hsiao S, White A, Biswas S, Khamis R, Chong CK, Cheung WM, Sherwin SJ, Bennett MR, Gil J, Mason JC, Haskard DO, Evans PC. Disturbed flow promotes endothelial senescence via a p53-dependent pathway. Arterioscler Thromb Vasc Biol. 2014;34:985–95.PubMedCrossRefGoogle Scholar
  96. 96.
    Ota H, Eto M, Ako J, Ogawa S, Iijima K, Akishita M, et al. Sirolimus and everolimus induce endothelial cellular senescence via sirtuin 1 down-regulation: therapeutic implication of cilostazol after drug-eluting stent implantation. J Am Coll Cardiol. 2009;53:2298–305.PubMedCrossRefGoogle Scholar
  97. 97.
    Paneni F, Volpe M, Luscher TF, Cosentino F. SIRT1, p66Shc, and Set7/9 in vascular hyperglycemic memory: bringing all the strands together. Diabetes. 2013;62:1800–7.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Guarani V, Deflorian G, Franco CA, Kruger M, Phng LK, Bentley K, Toussaint L, Dequiedt F, Mostoslavsky R, Schmidt MH, Zimmermann B, Brandes RP, Mione M, Westphal CH, Braun T, Zeiher AM, Gerhardt H, Dimmeler S, Potente M. Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature. 2011;473:234–8.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Tseng AH, Shieh SS, Wang DL. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic Biol Med. 2013;63:222–34.PubMedCrossRefGoogle Scholar
  100. 100.
    Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol. 2005;25:29–38.PubMedCrossRefGoogle Scholar
  101. 101.
    Wallace DC. Mitochondrial defects in cardiomyopathy and neuromuscular disease. Am Heart J. 2000;139:S70–85.PubMedCrossRefGoogle Scholar
  102. 102.
    Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest. 2009;119:2758–71.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, Cheung P, Kusumoto R, Kawahara TL, Barrett JC, Chang HY, Bohr VA, Ried T, Gozani O, Chua KF. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature. 2008;452:492–6.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Pereira CV, Lebiedzinska M, Wieckowski MR, Oliveira PJ. Regulation and protection of mitochondrial physiology by sirtuins. Mitochondrion. 2012;12:66–76.PubMedCrossRefGoogle Scholar
  105. 105.
    Maksin-Matveev A, Kanfi Y, Hochhauser E, Isak A, Cohen HY, Shainberg A. Sirtuin 6 protects the heart from hypoxic damage. Exp Cell Res. 2015;330:81–90.PubMedCrossRefGoogle Scholar
  106. 106.
    Lappas M. Anti-inflammatory properties of sirtuin 6 in human umbilical vein endothelial cells. Mediators Inflamm. 2012;2012:597514.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, Braun T, Bober E. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res. 2008;102:703–10.PubMedCrossRefGoogle Scholar
  108. 108.
    Marzetti E, Wohlgemuth SE, Anton SD, Bernabei R, Carter CS, Leeuwenburgh C. Cellular mechanisms of cardioprotection by calorie restriction: state of the science and future perspectives. Clin Geriatr Med. 2009;25:715–32.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Ungvari Z, Parrado-Fernandez C, Csiszar A, de Cabo R. Mechanisms underlying caloric restriction and life span regulation: implications for vascular aging. Circ Res. 2008;102:519–28.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Ungvari Z, Orosz Z, Rivera A, Labinskyy N, Xiangmin Z, Olson S, Podlutsky A, Csiszar A. Resveratrol increases vascular oxidative stress resistance. Am J Physiol. 2007;292:H2417–24.Google Scholar
  111. 111.
    Csiszar A, Smith K, Labinskyy N, Orosz Z, Rivera A, Ungvari Z. Resveratrol attenuates TNF-alpha-induced activation of coronary arterial endothelial cells: role of NF-{kappa}B inhibition. Am J Physiol. 2006;291:H1694–9.Google Scholar
  112. 112.
    Feser J, Tyler J. Chromatin structure as a mediator of aging. FEBS Lett. 2011;585:2041–8.PubMedCrossRefGoogle Scholar
  113. 113.
    Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23:781–3.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Loscalzo J, Handy DE. Epigenetic modifications: basic mechanisms and role in cardiovascular disease (2013 Grover Conference series). Pulm Circ. 2014;4:169–74.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31:89–97.PubMedCrossRefGoogle Scholar
  116. 116.
    Gilsbach R, Preissl S, Grüning BA, Schnick T, Burger L, Benes V, et al. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun. 2014;5:5288.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Johansson A, Enroth S, Gyllensten U. Continuous aging of the human DNA methylome throughout the human lifespan. PLoS One. 2013;8:e67378.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, Diez J, Sanchez-Mut JV, Setien F, Carmona FJ, Puca AA, Sayols S, Pujana MA, Serra-Musach J, Iglesias-Platas I, Formiga F, Fernandez AF, Fraga MF, Heath SC, Valencia A, Gut IG, Wang J, Esteller M. Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci U S A. 2012;109:10522–7.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Bellizzi D, D’Aquila P, Montesanto A, Corsonello A, Mari V, Mazzei B, Lattanzio F, Passarino G. Global DNA methylation in old subjects is correlated with frailty. Age. 2012;34:169–79.PubMedCrossRefGoogle Scholar
  120. 120.
    De Cecco M, Criscione SW, Peckham EJ, Hillenmeyer S, Hamm EA, Manivannan J, Peterson AL, Kreiling JA, Neretti N, Sedivy JM. Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell. 2013;12:247–56.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Bacalini MG, Friso S, Olivieri F, Pirazzini C, Giuliani C, Capri M, Santoro A, Franceschi C, Garagnani P. Present and future of anti-ageing epigenetic diets. Mech Ageing Dev. 2014;101–115.Google Scholar
  123. 123.
    Cloonan N, Wani S, Xu Q, Gu J, Lea K, Heater S, Barbacioru C, Steptoe AL, Martin HC, Nourbakhsh E, Krishnan K, Gardiner B, Wang X, Nones K, Steen JA, Matigian NA, Wood DL, Kassahn KS, Waddell N, Shepherd J, Lee C, Ichikawa J, McKernan K, Bramlett K, Kuersten S, Grimmond SM. MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol. 2011;12:R126.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Inukai S, Slack F. MicroRNAs and the genetic network in aging. J Mol Biol. 2013;425:3601–8.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    del Pilar Valencia-Morales M, Zaina S, Heyn H, Javier Carmona F, Varol N, Sayols S, Condom E, Ramírez-Ruz J, Gomez A, Moran S, Lund G, Rodríguez-Ríos D, López-González G, Ramírez-Nava M, de la Rocha C, Sanchez-Flores A, Esteller M. The DNA methylation drift of the atherosclerotic aorta increases with lesion progression. Med Genomics. 2015;8:7–16.CrossRefGoogle Scholar
  126. 126.
    Lowe D, Raj K. Premature aging induced by radiation exhibits proatherosclerotic effects mediated by epigenetic activation of CD44 expression. Aging Cell. 2014;13:900–10.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Zhang QJ, Chen HZ, Wang L, Liu DP, Hill JA, Liu ZP. The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J Clin Invest. 2011;121:2447–56.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Nguyen AT, Xiao B, Neppl RL, Kallin EM, Li J, Chen T, Wang DZ, Xiao X, Zhang Y. DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev. 2011;25:263–74.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Napoli C, Crudele V, Soricelli A, et al. Primary prevention of atherosclerosis: a clinical challenge for the reversal of epigenetic mechanisms? Circulation. 2012;125:2363–73.PubMedCrossRefGoogle Scholar
  130. 130.
    Santos F, Hyslop L, Stojkovic P, Leary C, Murdoch A, Reik W, Stojkovic M, Herbert M, Dean W. Evaluation of epigenetic marks in human embryos derived from IVF and ICSI. Hum Reprod. 2010;25:2387–95.PubMedCrossRefGoogle Scholar
  131. 131.
    Scherrer U, Rimoldi SF, Rexhaj E, Stuber T, Duplain H, Garcin S, de Marchi SF, Nicod P, Germond M, Allemann Y, Sartori C. Systemic and pulmonary vascular dysfunction in children conceived by assisted reproductive technologies. Circulation. 2012;125:1890–6.PubMedCrossRefGoogle Scholar
  132. 132.
    Johnson AA, Akman K, Calimport SRG, Wuttke D, Stolzing A, de Magalha˜es JP. The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res. 2012;15:483–94.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Francesca Tarantini
    • 1
    Email author
  • Claudia Di Serio
    • 1
  • Luigi Ferrucci
    • 2
  1. 1.Division of Geriatric Cardiology and Medicine, Research Unit of Medicine of Ageing, Department of Clinical and Experimental MedicineUniversity of FlorenceFlorenceItaly
  2. 2.National Institute on AgingBaltimoreUSA

Personalised recommendations