Aging Kidney: Vascular Characteristics and Assessment

  • Andrea Ungar
  • Marcello AmatoEmail author
  • Alice Ceccofiglio


Renal aging is a multifactorial process where gender, race, and genetic background and several key mediators such as chronic inflammation, oxidative stress, the renin–angiotensin–aldosterone system, impairment in kidney repair capacities, and background cardiovascular disease play a significant role [1]. Features of the aging kidney include macroscopic and microscopic changes and important functional adaptations, none of which is pathognomonic of aging. The principal anatomical modification is a gradual renal mass reduction that is more pronounced in the renal cortex than in the medulla [2, 3]. From a microscopic point of view, the aging kidney displays glomerular, tubular–interstitial, and vascular changes.


Renal Blood Flow Reduce Muscle Mass Serum CysC CysC Level Aging Kidney 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bolignano D, Mattace-Raso F, Sijbrands EJ, Zoccali C. The aging kidney revisited: a systematic review. Ageing Res Rev. 2014;14:65–80.CrossRefPubMedGoogle Scholar
  2. 2.
    Baylis C, Schmidt R. The aging glomerulus. Semin Nephrol. 1996;16:265–76.PubMedGoogle Scholar
  3. 3.
    Anderson S, Brenner BM. Effects of aging on the renal glomerulus. Am J Med. 1986;80:435–42.CrossRefPubMedGoogle Scholar
  4. 4.
    Kappel B, Olsen S. Cortical interstitial tissue and sclerosed glomeruli in the normal human kidney, related to age and sex. A quantitative study. Virchows Arch A Pathol Anat Histol. 1980;387:271–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Brenner BM. Hemodynamically mediated glomerular injury and the progressive nature of kidney disease. Kidney Int. 1983;23:647–55.CrossRefPubMedGoogle Scholar
  6. 6.
    Hill GS, Heudes D, Bariety J. Morphometric study of arterioles and glomeruli in the aging kidney suggests focal loss of autoregulation. Kidney Int. 2003;63:1027–36.CrossRefPubMedGoogle Scholar
  7. 7.
    Musso CG, Oreopoulos DG. Aging and physiological changes of the kidneys including changes in glomerular filtration rate. Nephron Physiol. 2011;119:1–5.CrossRefGoogle Scholar
  8. 8.
    Fliser D, Ritz E. Renal hemodynamics in the elderly. Nephrol Dial Transplant. 1996;11:2–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Lindeman RD, Goldman R. Anatomic and physiologic age changes in the kidney. Exp Gerontol. 1986;21:379–406.CrossRefPubMedGoogle Scholar
  10. 10.
    Laucks Jr SP, McLachlan MS. Aging and simple cysts of the kidney. Br J Radiol. 1981;54:12–4.CrossRefPubMedGoogle Scholar
  11. 11.
    Martin JE, Sheaff MT. Renal ageing. J Pathol. 2007;211:198–205.CrossRefPubMedGoogle Scholar
  12. 12.
    Rowe JW, Shock NW, DeFronzo RA. The influence of age on the renal response to water deprivation in man. Nephron. 1976;17:270–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Sands JM. Urine-concentrating ability in the aging kidney. J Gerontol A Biol Sci Med Sci. 2012;67:1352–7.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fliser D, Franek E, Joest M, Block S, Mutschler E, Ritz E. Renal function in the elderly: impact of hypertension and cardiac function. Kidney Int. 1997;51:1196–204.CrossRefPubMedGoogle Scholar
  15. 15.
    Epstein M, Hollenberg NK. Age as a determinant of renal sodium conservation in normal man. J Laborat Clin Med. 1976;87:411–7.Google Scholar
  16. 16.
    Crane MG, Harris JJ. Effect of aging on renin activity and aldosterone excretion. J Laborat Clin Med. 1976;87:947–59.Google Scholar
  17. 17.
    Luft FC, Weinberger MH, Fineberg NS, Miller JZ, Grim CE. Effects of age on renal sodium homeostasis. Am J Med. 1987;82:9–15.CrossRefPubMedGoogle Scholar
  18. 18.
    Ohashi M, Fujio N, Nawata H, Kato K, Ibayashi H, Kangawa K, Matsuo H. High plasma concentrations of human atrial natriuretic polypeptide in aged men. J Clin Endocrinol Metabol. 1987;64:81–5.CrossRefGoogle Scholar
  19. 19.
    Perazella MA, Mahnensmith RL. Hyperkalemia in the elderly: drugs exacerbate impaired potassium homeostasis. J Gen Intern Med. 1997;12:646–56.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Frassetto LA, Morris Jr RC, Sebastian A. Effect of age on blood acid–base composition in adult humans: role of age-related renal functional decline. Am J Physiol. 1996;271:1114–22.Google Scholar
  21. 21.
    Yamada H, Sacktor B, Kinsella J. Age-associated changes in ammoniagenesis in isolated rat renal tubule segments. Am J Physiol. 1992;262:600–5.Google Scholar
  22. 22.
    Adler S, Lindeman RD, Yiengst MJ, Beard E, Shock NW. Effect of acute acid loading on urinary acid excretion by the aging human kidney. J Laborat Clin Med. 1968;72:278–89.Google Scholar
  23. 23.
    Agarwal BN, Cabebe FG. Renal acidification in elderly subjects. Nephron. 1980;26:291–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Luckey AE, Parsa CJ. Fluid and electrolytes in the aged. Arch Surg. 2003;138:1055–60.CrossRefPubMedGoogle Scholar
  25. 25.
    Nakhoul FZC, Levin M, Gteen J, Winavet J, Better OS. Urinary acidification capacity in the elderly. Geriatr Nephrol Urol. 1995;5:149–55.CrossRefGoogle Scholar
  26. 26.
    Alpern RJ. Trade-offs in the adaptation to acidosis. Kidney Int. 1995;47:1205–15.CrossRefPubMedGoogle Scholar
  27. 27.
    Hollenberg NK, Adams DF, Solomon HS, Rashid A, Abrams HL, Merrill JP. Senescence and the renal vasculature in normal man. Circ Res. 1974;34:309–16.CrossRefPubMedGoogle Scholar
  28. 28.
    Davidson AJ, Talner LB, Downs 3rd WM. A study of the angiographic appearance of the kidney in an aging normotensive population. Radiology. 1969;92:975–83.CrossRefPubMedGoogle Scholar
  29. 29.
    Long DA, Mu W, Price KL, Johnson RJ. Blood vessels and the aging kidney. Nephron Exp Nephrol. 2005;101:95–9.CrossRefGoogle Scholar
  30. 30.
    Wesson LG. Renal hemodynamics in physiological states. In: Wesson LG, editor. Physiology of the human kidney. New York: Grune & Stratton; 1969. p. 96.Google Scholar
  31. 31.
    Fliser D, Zeier M, Nowack R, Ritz E. Renal functional reserve in healthy elderly subjects. J Am Soc Nephrol. 1993;3:1371–7.PubMedGoogle Scholar
  32. 32.
    Hollenberg NK, Adams DF, Solomon HS, Rashid A, Abrams LA, Merill JP. Senescence and the renal vasculature in normal men. Circ Res. 1974;34:309–16.CrossRefPubMedGoogle Scholar
  33. 33.
    Lindeman RD. Is the decline in renal function with normal aging inevitable? Geriatr Nephrol Urol. 1998;8:7–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Epstein M. Aging and the kidney. J Am Soc Nephrol. 1996;7:1106–22.PubMedGoogle Scholar
  35. 35.
    Casellas D, Moore LC. Autoregulation and tubuloglomerular feedback in juxtaglomerular arterioles. Am J Physiol. 1990;258:F660–9.PubMedGoogle Scholar
  36. 36.
    Johnson PC. Autoregulation of blood flow. Circ Res. 1986;59:483–95.CrossRefPubMedGoogle Scholar
  37. 37.
    Lorenz JN, Weihprecht H, Schnermann J, Skitt O, Briggs JP. Renin release from isolated juxtaglomerular apparatus depends on macula densa chloride transport. Am J Physiol. 1991;260:F486–93.PubMedGoogle Scholar
  38. 38.
    Arendshorst WJ, Brannstrom K, Ruan X. Actions of angiotensin II on renal microvasculature. J Am Soc Nephrol. 1999;10:S149–61.PubMedGoogle Scholar
  39. 39.
    Kurokawa K. Tubuloglomerular feedback: its physiological and pathophysiological significance. Kidney Int. 1998;54:S71–4.CrossRefGoogle Scholar
  40. 40.
    Schnermann J, Briggs JP. Restoration of tubuloglomerular feedback in volume-expanded rats by angiotensin II. Am J Physiol. 1990;259:F565–72.PubMedGoogle Scholar
  41. 41.
    Kenney WL, Zappe DH. Effect of age on renal blood flow during exercise. Aging Clin Exp Res. 1994;6:293–302.CrossRefGoogle Scholar
  42. 42.
    Castellani S, Ungar A, Cantini C, La Cava G, Di Serio C, Altobelli A, Vallotti B, Pellegri M, Brocchi A, Camaiti A, Coppo M, Meldolesi U, Messeri G, Masotti G. Excessive vasoconstriction after stress by the aging kidney: inadequate prostaglandin modulation of increased endothelin activity. J Lab Clin Med. 1998;132:186–94.CrossRefPubMedGoogle Scholar
  43. 43.
    Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–41.CrossRefPubMedGoogle Scholar
  44. 44.
    Cirillo M, Anastasio P, De Santo NG. Relationship of gender, age, and body mass index to errors in predicted kidney function. Nephrol Dial Transplant. 2005;20:1791–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Winter MA, Guhr KN, Berg GM. Impact of various body weights and serum creatinine concentrations on the bias and accuracy of the Cockcroft-Gaul equation. Pharmacotherapy. 2012;32:604–12.CrossRefPubMedGoogle Scholar
  46. 46.
    Levey AS, Bosch JP, Lewis JB. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med. 1999;130:461–70.CrossRefPubMedGoogle Scholar
  47. 47.
    Levey AS, Coresh J, Greene T. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145:247–54.CrossRefPubMedGoogle Scholar
  48. 48.
    Stevens LA, Coresh J, Feldman HI. Evaluation of the modification of diet in renal disease study equation in a large diverse population. J Am Soc Nephrol. 2007;18:2749–57.CrossRefPubMedGoogle Scholar
  49. 49.
    Poggio ED, Wang X, Greene T. Performance of the modification of diet in renal disease and Cockcroft-Gault equations in the estimation of GFR in health and in chronic kidney disease. J Am Soc Nephrol. 2005;16:459–66.CrossRefPubMedGoogle Scholar
  50. 50.
    Gaspari F, Ferrari S, Stucchi N. Performance of different prediction equations for estimating renal function in kidney transplantation. Am J Transplant. 2004;4:1826–35.CrossRefPubMedGoogle Scholar
  51. 51.
    Ibrahim H, Mondress M, Tello A. An alternative formula to the Cockcroft-Gault and the modification of diet in renal diseases formulas in predicting GFR in individuals with type 1 diabetes. J Am Soc Nephrol. 2005;16:1051–60.CrossRefPubMedGoogle Scholar
  52. 52.
    Ma Y-C, Zuo L, Chen J-H. Modified Glomerular Filtration Rate estimating equation for Chinese patients with chronic kidney disease. J Am Soc Nephrol. 2006;17:2937–44.CrossRefPubMedGoogle Scholar
  53. 53.
    Matsuo S, Imai E, Horio M. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.CrossRefPubMedGoogle Scholar
  54. 54.
    Levey AS, Stevens LA, CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–13.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Matsushita K, Mahmoodi BK, Chronic Kidney Disease Prognosis Consortium. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA. 2012;307:1941–51.CrossRefPubMedGoogle Scholar
  56. 56.
    Randers E, Kornerup K, Erlandsen EJ. Cystatin C levels in sera of patients with acute infection diseases with high C-reactive protein levels. Scand J Clin Lab Invest. 2001;61:333–5.CrossRefPubMedGoogle Scholar
  57. 57.
    Fricker M, Wiesli P, Brändle M. Impact of thyroid dysfunction on serum cystatin C. Kidney Int. 2003;63:1944–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Risch L, Herklotz R, Blumberg A. Effects of glucocorticoid immunosuppression on serum cystatin C concentrations in renal transplant patients. Clin Chem. 2001;47:2055–9.PubMedGoogle Scholar
  59. 59.
    Kottgen A, Selvin E, Stevens LA. Serum cystatin C in the United States: the Third National Health and Nutrition Examination Survey (NHANES III). Am J Kidney Dis. 2008;51:385–94.CrossRefPubMedGoogle Scholar
  60. 60.
    Inker LA, Schmid CH, CKD- EPI Investigators. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012;367:20–9.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Shlipak MG, Matsushita K, CKD Prognosis Consortium. Cystatin C versus creatinine in determining risk based on kidney function. N Engl J Med. 2013;369:932–43.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Oterdoom LH, Gansevoort RT, Schouten JP. Urinary creatinine excretion, an indirect measure of muscle mass, is an independent predictor of cardiovascular disease and mortality in the general population. Atherosclerosis. 2009;207:534–40.CrossRefPubMedGoogle Scholar
  63. 63.
    White SL, Polkinghorne KR, Atkins RC. Comparison of the prevalence and mortality risk of CKD in Australia using the CKD Epidemiology Collaboration (CKD-EPI) and Modification of Diet in Renal Disease (MDRD) Study GFR estimating equations: the AusDiab (Australian Diabetes, Obesity and Lifestyle) Study. Am J Kidney Dis. 2010;55:660–70.CrossRefPubMedGoogle Scholar
  64. 64.
    Mathisen UD, Melsom T, Ingebretsen OC. Estimated GFR associates with cardiovascular risk factors independently of measured GFR. J Am Soc Nephrol. 2011;22:927–37.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Van Pottelbergh G, Vaes B, Adriaensen W. The glomerular filtration rate estimated by new and old equations as a predictor of important outcomes in elderly patients. BMC Med. 2014;12:27.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Flamant M, Haymann JP, Vidal-Petiot E. GFR estimation using the Cockcroft-Gault, MDRD study, and CKD-EPI equations in the elderly. Am J Kidney Dis. 2012;60:847–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Kilbride HS, Stevens PE, Eaglestone G. Accuracy of the MDRD (Modification of Diet in Renal Disease) study and CKD-EPI (CKD Epidemiology Collaboration) equations for estimation of GFR in the elderly. Am J Kidney Dis. 2013;61:57–66.CrossRefPubMedGoogle Scholar
  68. 68.
    Pei X, Bao L, Xu Z. Diagnostic value of cystatin C and glomerular filtration rate formulae in Chinese nonelderly and elderly populations. J Nephrol. 2013;26:476–84.CrossRefPubMedGoogle Scholar
  69. 69.
    KDIGO. Clinical practice guidelines for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1–150.CrossRefGoogle Scholar
  70. 70.
    Schaeffner ES, Ebert N, Delanaye P. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann Intern Med. 2012;157:471–81.CrossRefPubMedGoogle Scholar
  71. 71.
    Koppe L, Klich A, Dubourg L. Performance of creatinine-based equations compared in older patients. J Nephrol. 2013;26:716–23.CrossRefPubMedGoogle Scholar
  72. 72.
    Vidal-Petiot E, Haymann JP, Letavernier E. External validation of the BIS (Berlin Initiative Study)-1 GFR estimating equation in the elderly. Am J Kidney Dis. 2014;63:865–7.CrossRefPubMedGoogle Scholar
  73. 73.
    Alshaer IM, Kilbride HS, Stevens PE, Eaglestone G, Knight S, Carter JL, Delaney MP, Farmer CK, Irving J, O’Riordan SE, Dalton RN, Lamb EJ. External validation of the Berlin equations for estimation of GFR in the elderly. Am J Kidney Dis. 2014;63:862–5.CrossRefPubMedGoogle Scholar
  74. 74.
    Lopes MB, Araújo LQ, Passos MT. Estimation of glomerular filtration rate from serum creatinine and cystatin C in octogenarians and nonagenarians. BMC Nephrol. 2013;14:265.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Liu X, Chen J, Wang C. Assessment of glomerular filtration rate in elderly patients with chronic kidney disease. Int Urol Nephrol. 2013;45:1475–82.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Andrea Ungar
    • 1
  • Marcello Amato
    • 2
    Email author
  • Alice Ceccofiglio
    • 3
  1. 1.Hypertension Centre - Syncope UnitGeriatrics Intensive Care Unit,University of Florence and Azienda Ospedaliero Universitaria CareggiFlorenceItaly
  2. 2.FlorenceItaly
  3. 3.Division of Geriatric Cardiology and MedicineCareggi Hospital and University of FlorenceFlorenceItaly

Personalised recommendations