Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 177 Accesses

Abstract

The Large Hadron Collider (LHC) at CERN [1] is currently the most powerful particle accelerator. Since the start of data taking in 2009, the LHC achieved collision energies ranging from 900 GeV up to 8 TeV for protons (pp) and 2.76 TeV for lead ions (Pb–Pb). These energies outreach those of earlier built machines as for example the Tevatron at FermiLab (USA) or the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) (USA) by a factor 4 to 10. In 2015, collision energies of 13 TeV for protons [2] and 5.1 TeV per nucleon for lead ion collisions (Pb–Pb) are planned to be realized.

Six quarks, six leptons, together with the gluons of QCD and the photon and the weak bosons [and the Higgs boson], are enough to describe the tangible world and more, with remarkable economy.

Robert Cahn and Gerson Goldhaber (2009)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Conseil Européen pour la Recherche Nucléaire.

  2. 2.

    The Higgs boson or more precisely its Higgs field is supposed to give mass to the particles, which makes them distinguishable. It was recently discovered by ATLAS and CMS at the LHC, see [35].

  3. 3.

    The existence of three colour charges as internal degrees of freedom defines the symmetry group of QCD, which is the special unitary group SU(3). From its dimension definition \(n^{2} -1 = 8\) eight coloured gluons can be derived. As a guidance, the QED symmetry group is the unitary group U(1) with dimension 1, which is inherited from the single electrical charge.

  4. 4.

    The momentum can be translated into a minimal distance and vice versa via Heisenberg’s uncertainty principle \(\Delta p \Delta r\ge \hbar \), with \(\hbar \) as the Planck constant divided by \(2\pi \).

  5. 5.

    “In quantum field theories like QCD and QED, physical quantities R can be expressed by a perturbation series in powers of the coupling parameter \(\alpha _{s}\) or \(\alpha \), respectively. If these couplings are sufficiently small, i.e. if \(\alpha _{s}\ll 1\), the series may converge sufficiently quickly such that it provides a realistic prediction of R even if only a limited number of perturbative orders will be known.”[19].

  6. 6.

    The order of a group operation depends on the order of the groups, i.e. interactions cannot be exchanged: \(AB\ne BA\).

  7. 7.

    Pions: \(\pi ^{+}\), \(\pi ^{0}\), \(\pi ^{-}\) are mesons consisting of \(\mathrm{u}\bar{\mathrm{d}}\), \(\mathrm{u}\bar{\mathrm{u}}+\mathrm{d}\bar{\mathrm{d}}\), \(\mathrm{d}\bar{\mathrm{u}}\).

  8. 8.

    A first order phase transition is characterised by a discontinuity of the first derivative of an EoS, a second order phase transition is given in case of a discontinuity of a second derivative. Typical for the latter is a continuous behaviour of the order parameter of interest, whereas a step is seen in the first case. This classification of phase transitions is also referred to as Ehrenfest classification [37].

  9. 9.

    A common, simplified definition of the freeze-out says, that the newly created hadrons decouple when the mean free path of the particles in the system is larger than the system size. The mean free path is given by \(\Lambda = 1/n\sigma \) where \(\sigma \) is the cross section of elastic collisions between the particles.

References

  1. L. Evans, P. Bryant, LHC Machine. JINST 3, S08001 (2008). http://stacks.iop.org/1748-0221/3/i=08/a=S08001

  2. Restarting the LHC: Why 13 Tev?. http://home.cern/about/engineering/restarting-lhc-why-13-tev

  3. G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012). doi:10.1016/j.physletb.2012.08.020

    Article  ADS  Google Scholar 

  4. S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012). doi:10.1016/j.physletb.2012.08.021

    Article  ADS  Google Scholar 

  5. S. Lu, C. Zong, W. Fan, M. Yang, J. Li, A.R. Chapman, P Zhu, X. Hu, L. Xu, L. Yan, F. Bai, The Higgs Boson. Science 338(6114), 1558 (2012). doi:10.1126/science.1232005

  6. A.A. Alves et al., The LHCb detector at the LHC. J. Instrum. 3 S08005 (2008). http://stacks.iop.org/1748-0221/3/i=08/a=S08005

  7. T.H. KohsukeYagi, Y. Miake, Quark-gluon plasma. (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  8. NASA: http://map.gsfc.nasa.gov/media/060915

  9. A. Adams et al., Strongly correlated quantum fluids: ultracold quantum gases, quantum chromodynamic plasmas and holographic duality. New J. Phys. 14, 115009 (2012). doi:10.1088/1367-2630/14/11/115009

    Article  ADS  MathSciNet  Google Scholar 

  10. Hot and Dense QCD Matter - A Community White Paper on the Future of Relativistic Heavy-Ion Physics in the US. http://www.bnl.gov/npp/docs/Bass_RHI_WP_final.pdf

  11. H.D. Perkins, Introduction to High Energy Physics, 4th edn. (Cambridge Universtity Press, Cambridge, 2000)

    Google Scholar 

  12. F. Abe et al., Observation of top quark production in pp collisions with the collider detector at fermilab. Phys. Rev. Lett. 74, 2626 (1995). doi:10.1103/PhysRevLett.74.2626

    Article  ADS  Google Scholar 

  13. S. Abachi et al., Observation of the top quark. Phys. Rev. Lett. 74, 2632 (1995). doi:10.1103/PhysRevLett.74.2632

    Article  ADS  Google Scholar 

  14. K. Olive et al., Review of particle physics. Chin. Phys. C38, 090001 (2014). http://pdg.lbl.gov/

    Google Scholar 

  15. K. Olive et al., Neutrino mass, mixing, and oscillations. Chin. Phys. C38, 090001 (2014). http://pdg.lbl.gov/2014/reviews/rpp2014-rev-neutrino-mixing.pdf

  16. H. Fritzsch, M. Gell-Mann, Current algebra: quarks and what else? in Proceedings of the 16th International Conference On High-Energy Physics, ed. by J. Jackson, A. Roberts, vol 2 (Batavia, Illinois, USA, 1972), p. 135. http://www.slac.stanford.edu/econf/C720906/

  17. H. Fritzsch, M. Gell-Mann, H. Leutwyler, Advantages of the color octet gluon picture. Phys. Lett. B 47, 365 (1973). doi:10.1016/0370-2693(73)90625-4

    Article  ADS  Google Scholar 

  18. E. Eichten et al., Spectrum of charmed quark-antiquark bound states. Phys. Rev. Lett. 34, 369 (1975). doi:10.1103/PhysRevLett.34.369

    Article  ADS  Google Scholar 

  19. S. Bethke, The 2009 world average of alpha(s). Eur. Phys. J. C 64, 689 (2009). doi:10.1140/epjc/s10052-009-1173-1

    Article  ADS  Google Scholar 

  20. H.D. Politzer, Asymptotic freedom: an approach to strong interactions. Phys. Rep. 14, 129 (1974). doi:10.1016/0370-1573(74)90014-3

    Article  ADS  Google Scholar 

  21. H.D. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346 (1973). doi:10.1103/PhysRevLett.30.1346

    Article  ADS  Google Scholar 

  22. D.J. Gross, F. Wilczek, Ultraviolet behavior of non-abelian gauge theories. Phys. Rev. Lett. 30, 1343 (1973). doi:10.1103/PhysRevLett.30.1343

    Article  ADS  Google Scholar 

  23. K.G. Wilson, Confinement of quarks. Phys. Rev. D 10, 2445 (1974). doi:10.1103/PhysRevD.10.2445

    Article  ADS  Google Scholar 

  24. F.A. Wilczek, Asymptotic freedom: from paradox to paradigm. Nobel Lecture (2004)

    Google Scholar 

  25. J. Rak, M.J. Tannenbaum, High pT physics in the heavy ion era. (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  26. J. Schaffner-Bielich, Signals of the QCD phase transition in the heavens. POS CPOD2007, 062 (2007). arXiv:0709.1043 [astro-ph]

  27. K. Fukushima, T. Hatsuda, The phase diagram of dense QCD. Rept. Prog. Phys. 74, 014001 (2011). doi:10.1088/0034-4885/74/1/014001

    Article  ADS  Google Scholar 

  28. S. Borsanyi et al., Full result for the QCD equation of state with 2+1 flavors. Phys. Lett. B 730, 99 (2014). doi:10.1016/j.physletb.2014.01.007

    Article  ADS  Google Scholar 

  29. J.D. Bjorken, Highly relativistic nucleus-nucleus collisions: the central rapidity region. Phys. Rev. D 27, 140 (1983). doi:10.1103/PhysRevD.27.140

    Article  ADS  Google Scholar 

  30. S. Chatrchyan et al., Measurement of the pseudorapidity and centrality dependence of the transverse energy density in Pb-Pb collisions at \(\sqrt{{{\mathit{s}}}_{\rm NN}}\) = 2.76 TeV. Phys. Rev. Lett. 109, 152303 (2012). doi:10.1103/PhysRevLett.109.152303

  31. K. Aamodt et al., Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb-Pb collisions at \(\sqrt{{\mathit{s}}_{\rm NN}}\) = 2.76 TeV. Phys. Rev. Lett. 106, 032301 (2011). doi:10.1103/PhysRevLett.106.032301

  32. B. Abelev et al., Centrality determination of Pb-Pb collisions at \(\sqrt{{\mathit{s}}_{\rm NN}}\) = 2.76 TeV with ALICE. Phys. Rev. C 88, 044909 (2013). doi:10.1103/PhysRevC.88.044909

  33. A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition. Phys. Rev. D 85, 054503 (2012). doi:10.1103/PhysRevD.85.054503

    Article  ADS  Google Scholar 

  34. Y. Aoki et al., The Order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 443, 675 (2006). doi:10.1038/nature05120

    Article  ADS  Google Scholar 

  35. K.M. Burke et al., Extracting jet transport coefficient from jet quenching at RHIC and LHC. Phys. Rev. C 90, 014909 (2014). doi:10.1103/PhysRevC.90.014909

    Article  ADS  Google Scholar 

  36. M. Gyulassy, L. McLerran, New forms of QCD matter discovered at RHIC. Nucl. Phys. A 750, 30 (2005). doi:10.1016/j.nuclphysa.2004.10.034

    Article  ADS  Google Scholar 

  37. P. Ehrenfest, Phasenumwandlungen im ueblichen und erweiterten Sinn, classifiziert nach den entsprechenden Singularitaeten des thermodynamischen Potentiales. Proc. R Acad. 36 153(1933). http://www.dwc.knaw.nl/DL/publications/PU00016385.pdf

  38. B.Müller, Investigation of Hot QCD Matter: Theoretical Aspects (2013). arXiv:1309.7616 [nucl-th]

  39. N. Metropolis, S. Ulam, The monte carlo method. J. Am. Stat. Assoc. 44, 335 (1949). doi:10.1080/01621459.1949.10483310

    Article  MathSciNet  MATH  Google Scholar 

  40. M.H. Seymour, M. Marx, Monte Carlo Event Generators (2013). arXiv:1304.6677 [hep-ph]

  41. R. Stock, Relativistic heavy ion physics: introduction, ed. by R. Stock. Springer Materials - Landolt-Bornstein - Group I Elementary Particles, Nuclei and Atoms, vol. 23 (Springer, Heidelberg, 2010). doi:10.1007/978-3-642-01539-7_1

    Google Scholar 

  42. CERN-press-office: New state of matter created at CERN. http://press.web.cern.ch/press-releases/2000/02/new-state-matter-created-cern

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Schuchmann .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schuchmann, S. (2016). Introduction. In: Modification of K0s and Lambda(AntiLambda) Transverse Momentum Spectra in Pb-Pb Collisions at √sNN = 2.76 TeV with ALICE. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-43458-2_1

Download citation

Publish with us

Policies and ethics