Representer-Based Variational Data Assimilation Systems: A Review



This chapter reviews developments in representer-based variational data assimilation systems over the past 15 years. Data assimilation systems with representer-based algorithms are routinely used in operational and research centers for producing four-dimensional atmospheric and oceanic analyses and prediction. The systems reviewed in this chapter are the Inverse Ocean Modeling (IOM) system, the Naval Research Laboratory Atmospheric Variational Data Assimilation System-Accelerated Representer (NAVDAS-AR) system, the Navy Coastal Ocean Model 4D-Var (NCOM 4D-Var) system, and the Regional Ocean Modeling System 4D-Var (ROMS 4D-Var ) system. These systems are mature operational or semi-operational weak-constraint, four-dimensional variational data assimilation systems. The emphasis here is on providing brief reviews with the key references related to the implementation and applications of these systems. Readers interested in early developments of representer-based systems (before 2002) are encouraged to look at Chua and Bennett (2001) and Bennett (2002).


Global Navigation Satellite System Global Navigation Satellite System Data Assimilation Data Assimilation System Regional Ocean Modeling System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is partially supported by the Chief of Naval Research through the NRL Base Program, PE 0601153N. The authors gratefully acknowledge Professor Andrew Bennett, a pioneer in the field of representer method for variational data assimilation. The authors also gratefully acknowledge late Professor Yoshi Sasaki, the developer of the weak-constraint variational data assimilation technique.


  1. Baker NL, Daley R (2000) Observation and background adjoint sensitivity in the adaptive observation-targeting problem. Q J R Meteorol Soc 126:1431–1454CrossRefGoogle Scholar
  2. Barron CN, Birol Kara A, Martin PJ, Rhodes RC, Smedstad L (2006) Formulation, implementation and examination of vertical coordinate choices in the Global Navy Coastal Ocean Model (NCOM). Ocean Model 11:347–375CrossRefGoogle Scholar
  3. Bennett AF (1992) Inverse methods in physical oceanography. Cambridge University Press, New York, 346 ppGoogle Scholar
  4. Bennett AF (2002) Inverse modeling of the ocean and atmosphere. Cambridge University Press, New York, 234 ppGoogle Scholar
  5. Bennett AF, Chua BS, Pflaum BL, Erwig M, Fu Z, Loft RD, Muccino JC (2008) The inverse ocean modeling system. I: Implementation. J Atmos Oceanic Technol 25:1608–1622CrossRefGoogle Scholar
  6. Bishop CH, Toth Z (1999) Ensemble transformation and adaptive observations. J Atmos Sci 56:1748–1765CrossRefGoogle Scholar
  7. Carrier M, Ngodock H, Smith S, Muscarella P, Jacobs G, Özgökmen T, Haus B, Lipphardt B (2014) Impact of assimilating ocean velocity observations inferred from lagrangian drifter data using the NCOM-4DVAR. Mon Weather Rev 142:1509–1524CrossRefGoogle Scholar
  8. Chua BS, Bennett AF (2001) An inverse ocean modeling system. Ocean Model 3:137–165CrossRefGoogle Scholar
  9. Chua BS, Xu L, Rosmond T, Zaron ED (2009) Preconditioning representer-based variational data assimilation systems: application to NAVDAS-AR. In: Park SK, Xu L (eds) Data assimilation for atmospheric, oceanic and hydrologic applications. Springer, Berlin/Heidelberg, pp 307–319CrossRefGoogle Scholar
  10. Chua BS, Zaron ED, Xu L, Baker N, Rosmond T (2013) Recent applications in representer-based variational data assimilation. In: Park SK, Xu L (eds) Data assimilation in atmospheric, oceanic and hydrologic application, vol 2. Springer, Berlin, pp 287–301CrossRefGoogle Scholar
  11. Courtier P (1997) Dual formulation of four-dimensional variational assimilation. Q J R Meteorol Soc 123:2449–2461CrossRefGoogle Scholar
  12. Daescu DN, Langland RH (2013a) Error covariance sensitivity and impact estimation with adjoint 4D-Var: theoretical aspects and first applications to NAVDAS-AR. Q J R Meteorol Soc 139:226–241CrossRefGoogle Scholar
  13. Daescu DN, Langland RH (2013b) The adjoint sensitivity guidance to diagnosis and tuning of error covariance parameters. In: Park SK, Xu L (eds) Data assimilation in atmospheric, oceanic and hydrologic application, vol 2. Springer-Verlag, Berlin, pp 205–232CrossRefGoogle Scholar
  14. Dee DP (2004) Variational bias correction of radiance data in the ECMWF system. Proceedings of the ECMWF workshop on assimilation of high spectral resolution sounders in NWP. Reading, UK, pp 97–112Google Scholar
  15. Di Lorenzo E, Moore A, Arango H, Chua B, Cornuelle BD, Miller AJ, Powell B, Bennett A (2007) Weak and strong constraint data assimilation in the inverse regional ocean modeling system (ROMS): development and application for a baroclinic coastal upwelling system. Ocean Model 16(3–4):160–187CrossRefGoogle Scholar
  16. Erwig M, Fu Z, Pflaum BL (2007) Parametric fortran: program generation in scientific computing. J Softw Maint Evol 19:155–182CrossRefGoogle Scholar
  17. Gürol S, Weaver AT, Moore AM, Piacentini A, Arango HG, Gratton S (2014) B-preconditioned minimization algorithms for variational data assimilation with the dual formulation. Q J R Meteorol Soc 140:539–556CrossRefGoogle Scholar
  18. Hogan T, Rosmond T (1991) The description of the navy operational global atmospheric prediction system’s spectral forecast model. Mon Weather Rev 119:1786–1815CrossRefGoogle Scholar
  19. Hogan TF, Liu M, Ridout JA, Peng MS, Whitcomb TR, Ruston BC, Reynolds CA, Eckermann SD, Moskaitis JR, Baker NL, McCormack JP, Viner KC, McLay JG, Flatau MK, Xu L, Chen C, Chang SW (2014) The navy global environmental model. Oceanography 27(3):116–125CrossRefGoogle Scholar
  20. Hoppel KW, Eckermann SD, Coy L, Nedoluha GE, Allen DR, Swadley S, Baker NL (2013) Evaluation of SSMIS upper atmosphere sounding channels for high-altitude data assimilation. Mon Weather Rev 141:3314–3330CrossRefGoogle Scholar
  21. Kuhl DD, Rosmond TE, Bishop CH, McLay J, Baker NL (2013) Comparison of hybrid ensemble/4DVar and 4DVar within NAVDAS-AR data assimilation framework. Mon Weather Rev 141:2740–2758CrossRefGoogle Scholar
  22. Langland RH, Baker NL (2004) Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus 56A:189–201CrossRefGoogle Scholar
  23. Levin JC, Haidvogel DB, Chua B, Bennett AF, Iskandarani M (2006) Euler-Lagrange equations for the spectral element shallow water system. Ocean Model 12:348–377CrossRefGoogle Scholar
  24. Martin PJ (2000) Description of the navy coastal ocean model version 1.0. NRL Report NRL/FR/7322/00/9962/, 45 ppGoogle Scholar
  25. Moore AM, Arango HG, Broquet G, Powell BS, Zavala-Garay J, Weaver AT (2011a) The regional ocean modeling system (ROMS) 4-dimensional variational data assimilation systems. Part I: System overview and formulation. Prog Oceanogr 91:34–49CrossRefGoogle Scholar
  26. Moore AM, Arango HG, Broquet G, Edwards CA, Veneziani M, Powell BS, Foley D, Doyle J, Costa D, Robinson P (2011b) The regional ocean modeling system (ROMS) 4-dimensional variational data assimilation systems. Part II: performance and application to the California Current System. Prog Oceanogr 91:50–73CrossRefGoogle Scholar
  27. Moore AM, Arango HG, Broquet G, Edwards CA, Veneziani M, Powell BS, Foley D, Doyle J, Costa D, Robinson P (2011c) The regional ocean modeling system (ROMS) 4-dimensional variational data assimilation systems. Part III: Observation impact and observation sensitivity in the California Current System. Prog Oceanogr 91:74–94CrossRefGoogle Scholar
  28. Moore AM, Edwards C, Fiechter J, Drake P, Arango HG, Neveu E, Gürol S, Weaver AT (2013) A 4D-Var analysis system for the california current: a prototype for an operational regional ocean data assimilation system. In: Park SK, Xu L (eds) Data assimilation in atmospheric, oceanic and hydrologic application, vol 2. Springer, Berlin, pp 345–366CrossRefGoogle Scholar
  29. Muccino JC, Luo H (2005) Picard iterations for a finite element shallow water equation model. Ocean Model 10:316–341CrossRefGoogle Scholar
  30. Muccino JC, Arango H, Bennett AB, Chua BS, Cornuelle B, DiLorenzo E, Egbert GD, Hao L, Levin J, Moore AM, Zaron ED (2008) The inverse ocean modeling system. II: Applications. J Atmos Oceanic Technol 25:1623–1637CrossRefGoogle Scholar
  31. Muscarella PA, Carrier M, Ngodock H, Smith S, Lipphardt B, Kirwan AD, Huntley H (2015) Do assimilated drifter velocities improve lagrangian predictability in an operational ocean model? Mon Weather Rev 143:1822–1832CrossRefGoogle Scholar
  32. Ngodock H, Carrier M (2013) A weak constraint 4D-Var assimilation system for the navy coastal ocean model using the representer method. In: Park SK, Xu L (eds) Data assimilation in atmospheric, oceanic and hydrologic application, vol 2. Springer, Berlin, pp 367–390CrossRefGoogle Scholar
  33. Ngodock H, Carrier M (2014a) A 4DVAR System for the navy coastal ocean model. Part I: System description and assimilation of synthetic observations in monterey bay. Mon Weather Rev 142:2085–2107CrossRefGoogle Scholar
  34. Ngodock H, Carrier M (2014b) A 4DVAR System for the navy coastal ocean model. Part II: Strong and weak constraint assimilation experiments with real observations in monterey bay. Mon Weather Rev 142:2108–2117CrossRefGoogle Scholar
  35. Notay Y (2000) Flexible conjugate gradients. SIAM J Sci Comput 22:1444–1460CrossRefGoogle Scholar
  36. Rosmond T, Xu L (2006) Development of NAVDAS-AR: nonlinear formulation and outer loop tests. Tellus 58A:45–58CrossRefGoogle Scholar
  37. Ruston B, Baker N, Swadley S, Hoppel K (2015) Assimilation in the upper stratosphere and mesosphere: role of radiances. In: Proceedings of ECMWF seminar on use of satellite observations in numerical weather prediction, Reading, UK, 8–12 Sept 2014Google Scholar
  38. Sasaki Y (1970) Some basic formulations in numerical variational analysis. Mon Weather Rev 98:875–883CrossRefGoogle Scholar
  39. Shchepetkin AF, McWilliams JC (2005) The regional oceanic modeling system (ROMS): a split explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9:347–404CrossRefGoogle Scholar
  40. Xu L, Daley R (2002) Data assimilation with a barotropically unstable shallow water system using representer algorithms. Tellus 54A:125–137CrossRefGoogle Scholar
  41. Xu L, Rosmond T, Daley R (2005) Development of NAVDAS-AR: formulation and initial tests of the linear problem. Tellus 57A:546–559CrossRefGoogle Scholar
  42. Xu L, Langland R, Baker N, Rosmond T (2006) Development of the NRL 4D-Var data assimilation adjoint system. Geophys Res Abs 8:8773Google Scholar
  43. Xu L, Rosmond T, Goerss J, Chua B (2007) Toward a weak constraint operational 4D-Var system: application of the Burger’s equation. Meteorol Z 16:767–776CrossRefGoogle Scholar
  44. Zaron ED, Egbert GD (2006) Verification studies for a z-coordinate primitive-equation model: tidal conversion at a mid-ocean ridge. Ocean Model 14:257–278CrossRefGoogle Scholar
  45. Zhang WG, Wilkin JL, Levin JC (2010) Towards building an integrated observation and modeling system in the New York Bight using variational methods. Part II: Representer-based observing system evaluation. Ocean Model 35:134–145CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Science Applications International CorporationMontereyUSA
  2. 2.Marine Meteorology DivisionNaval Research LaboratoryMontereyUSA

Personalised recommendations