Skip to main content

On the Impact of the Diabatic Component in the Forecast Sensitivity Observation Impact Diagnostics

  • Chapter
  • First Online:
Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. III)

Abstract

Over the years, a comprehensive set of the linearized physical parametrization schemes has been developed at ECMWF . These linearized schemes, operationally used in data assimilation, parametrize both the dry physical processes (vertical diffusion, gravity wave drag , shortwave and longwave radiation) and the moist processes (convection, large-scale condensation and clouds) consistently with the physical parametrization of the nonlinear model (though some simplifications are applied). In this work, the representation of the moist physical processes in the adjoint assimilation model is compared with the representation of humidity in the energy norm used to compute the forecast sensitivity to observations in the short-range forecasts. Forecast Sensitivity Observation Impact using the adjoint model with only dry processes (dry adjoint) but moist energy norm in the sensitivity gradient calculation is examined in contrast with the observation impact obtained when moist processes (moist adjoint ) and dry energy norm are used. The performed study indicates that the use of the humidity term in the norm produces unrealistic humidity and temperature sensitivity gradients, which largely affect the observation forecast impact results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    T255 corresponding approximately to 80 km.

  2. 2.

    T1279 corresponding approximately to 16 km.

  3. 3.

    T159/T255 corresponding approximately to 130/80 km, respectively.

References

  • Baker NL, Daley R (2000) Observation and background adjoint sensitivity in the adaptive observation targeting problem. Q J R Meteorol Soc 126:1431–1454

    Article  Google Scholar 

  • Barkmeijer J, Buizza R, Palmer TN, Puri K, Mahfouf J-F (2001) Tropical singular vectors computed with linearized diabatic physics. Q J R Meteorol Soc 201:685–708

    Article  Google Scholar 

  • Bauer P, Radnoti G, Healey S, Cardinali C (2014) GNSS Radio occultation observing system experiments. Mon Weather Rev 142:555–572

    Article  Google Scholar 

  • Bouttier F, Kelly G (2001) Observing-system experiments in the ECMWF4D-Var data assimilation system. Q J R Meteorol Soc 127:1469–1488

    Article  Google Scholar 

  • Buizza R (1994) Impact of simple vertical diffusion and of the optimisation time on optimal unstable structures. ECMWF Technical Memorandum 192, ECMWF, Reading, UK, 25 pp

    Google Scholar 

  • Buizza R, Palmer TN, Barkmeijer J, Gelaro R, Mahfouf JF (1996) Singular vectors, norms and large-scale condensation. In: Proceedings of conference on numerical weather prediction, Norfolk, Virginia, American Meteorological Society, pp 50–52

    Google Scholar 

  • Cardinali C, Buizza R (2004) Observation sensitivity to the analysis and the forecast: A case study during ATreC targeting campaign. In: Proceedings of the First THORPEX International Science Symposium, 6–10 Dec 2004, Montreal, Canadan WMO TD 1237 WWRP/THORPEX N. 6

    Google Scholar 

  • Cardinali C, Pezzulli S, Andersson E (2004) Influence-matrix diagnostic of a data assimilation system. Q J R Meteorol Soc 130:2767–2786

    Article  Google Scholar 

  • Cardinali C (2009) Monitoring the observation impact on the short-range forecast. Q J R Meteorol Soc 135:239–250

    Article  Google Scholar 

  • Cardinali C (2015) Advanced data assimilation for geosciences. École de Physique des Houches, Les Houches 2012. Chaps. 5 and 6. Oxford University Press

    Google Scholar 

  • Chapnik B, Desroziers G, Rabier F, Talagrand O (2004) Properties and first applications of an error-statistics tuning method in variational assimilation. Q J R Meteorol Soc 132:543–565

    Article  Google Scholar 

  • Courtier P, Andersson E, Heckley W, Pailleux J, Vasiljevic D, Hamrud DM, Hollingsworth A, Rabier F, Fisher M (1998) The ECMWF implementation of three-dimensional variational assimilation (3D-Var). Part I: Formulation. Q J R Meteorol Soc 124:1783–1807

    Google Scholar 

  • Daescu DN, Todling R (2010) Adjoint sensitivity of the model forecast to data assimilation system error covariance parameters. Q J R Meteorol Soc 136:2000–2012

    Article  Google Scholar 

  • Ehrendorfer M, Errico RM, Raeder D (1999) Singular-vector perturbation growth in a primitive equation model with moist physics. J Atmos Sci 56:1627–1648

    Article  Google Scholar 

  • English S, Saunders R, Candy B, Forsythe M, Collard A (2004) Met. Office satellite data OSEs. In: Proceedings of Third WMO workshop on the impact of various observing systems on numerical weather prediction, Alpbach, Austria, WMO/TD-1228 Geneva, pp 146–156

    Google Scholar 

  • Errico RM (2007) Interpretation of an adjoint-derived observational impact measure. Tellus 59A:273–276

    Article  Google Scholar 

  • Gelaro R, Zhu Y (2009) Examination of observation impacts derived from observing system experiments (OSEs) and adjoint models. Tellus 61A:179–193

    Article  Google Scholar 

  • Janisková M, Thépaut J-N, Geleyn J-F (1999) Simplified and regular physical parameterizations for incremental four-dimensional variational assimilation. Mon Weather Rev 127:26–45

    Article  Google Scholar 

  • Janisková M, Mahfouf J-F, Morcrette J-J, Chevallier F (2002) Linearized radiation and cloud schemes in the ECMWF model: development and evaluation. Q J R Meteorol Soc 128:1505–1527

    Article  Google Scholar 

  • Janisková M, Lopez P (2013) Linearized physics for data assimilation at ECMWF. In: Park SK, Xu L (eds.) Data assimilation for atmospheric, oceanic and hydrological applications, vol II. Springer, Berlin Heidelberg, pp 251–286. doi:10.1007/978-3-642-35088-7_1

  • Kelly G, Thépaut JN (2007) Evaluation of the impact of the space component of the global observation system through Observing System Experiments. ECMWF Newsletter 113, Autumn, 16–28

    Google Scholar 

  • Langland R, Baker NL (2004) Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus 56A:189–201

    Article  Google Scholar 

  • Laroche S, Tanguay M, Delage Y (2002) Linearization of a simplified planetary boundary layer parametrization. Mon Weather Rev 130:2074–2087

    Article  Google Scholar 

  • Lopez P, Moreau E (2005) A convection scheme for data assimilation: Description and initial tests. Q J R Meteorol Soc 131:409–436

    Article  Google Scholar 

  • Lorenc AC, Marriot RT (2014) Forecast sensitivity to observations in the Met Office global numerical weather prediction system. Q J R Meteorol Soc 140:209–224. doi:10.1002/qj.2122

  • Mahfouf JF, Buizza R, Errico RM (1996) Strategy for including physical processes in the ECMWF variational data assimilation system. In: Proceedings of ECMWF Workshop on non-linear aspects of data assimilation, 9–11 Sept 1996, Reading, U.K, pp 595–632

    Google Scholar 

  • Mahfouf J-F (1999) Influence of physical processes on the tangent-linear approximation. Tellus 51:147–166

    Article  Google Scholar 

  • Mahfouf J-F (2005) Linearization of a simple moist convection for large-scale NWP models. Mon Weather Rev 133:1655–1670

    Article  Google Scholar 

  • Purser RJ, Huang H-L (1993) Estimating effective data density in a satellite retrieval or an objective analysis. J Appl Meteteorol Soc 32:1092–1107

    Article  Google Scholar 

  • Rabier F, Järvinen H, Klinker E, Mahfouf J-F, Simmons A (2000) The ECMWF operational implementation of four-dimensional variational assimilation. Part I: Experimental results with simplified physics. Q J R Meteorol Soc 126:1143–1170

    Article  Google Scholar 

  • Tompkins AM, Janisková M (2004) A cloud scheme for data assimilation: Description and initial tests. Q J R Meteorol Soc 130:2495–2517

    Google Scholar 

  • Xu L., Langland R, Baker N, Rosmond T (2006) Development and testing of the adjoint of NAVDAS-AR. In: Proceedings of Seventh international workshop om adjoint applications in dynamic meteorology, 8–13 Oct 2006, Obergurgl, Austria

    Google Scholar 

  • Županski D, Mesinger F (1995) Four-dimensional variational assimilation of precipitation data. Mon Weather Rev 123:1112–1127

    Google Scholar 

  • Zhu Y, Gelaro R (2008) Observation sensitivity calculations using the adjoint of the Gridpoint Statistical Interpolation (GSI) analysis system. Mon Weather Rev 136:335–351

    Article  Google Scholar 

  • Zou X, Navon IM, Sela JG (1993) Variational data assimilation with moist threshold processes using the NMC spectral model. Tellus 45A:370–387

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Philippe Lopez and Anton Beljaars for their constructive comments to this article. The anonymous reviewer is also acknowledged for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Janisková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Janisková, M., Cardinali, C. (2017). On the Impact of the Diabatic Component in the Forecast Sensitivity Observation Impact Diagnostics. In: Park, S., Xu, L. (eds) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. III). Springer, Cham. https://doi.org/10.1007/978-3-319-43415-5_22

Download citation

Publish with us

Policies and ethics