Skip to main content

States, Effects and Observables

  • Chapter
  • First Online:
Quantum Measurement

Part of the book series: Theoretical and Mathematical Physics ((TMP))

  • 2871 Accesses

Abstract

In this chapter we review the basic elements and structures of Hilbert space quantum mechanics. We build on the idea of a statistical duality arising from the analysis of an experiment as a preparation-measurement-registration scheme, as sketched in Sect. 1.2. The description of a physical system \(\mathcal {S}\) is thus based on the notions of states as equivalence classes of preparations, observables as equivalence classes of measurements, and on the probability measures for the possible measurement outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The notion of superposition of states goes back to Dirac [2]. Ever since, this notion has been considered as one of the basic principles of quantum mechanics. The superposition of states is generally formulated in terms of the linear combination of state vectors, or wave functions. Here we adopt a slightly more abstract point of view, formulating it in terms of the pure states, i.e., one-dimensional projections. This perspective is needed in the axiomatic context of Chap. 23.

  2. 2.

    The need to form statistical mixtures of (pure) states was equally evident in the early stages of quantum mechanics. The explicit formula \(\varrho =\sum _nw_nP[\varphi _n]\) for a statistical mixture of pure states \(P[\varphi _n]\) with the weights \(w_n\) (Gemisch von Zuständen) was already developed and investigated in detail by von Neumann [3].

  3. 3.

    As discussed in Sect. 1.2, this assumption is built into the very idea of a mixed state.

  4. 4.

    This argument is essentially the same as that used by von Neumann in [1] to show that the observables of a quantum system are to be represented as hypermaximal symmetric operators (which are now called selfadjoint operators). The sole difference between von Neumann’s and the present approach is that here we do not adopt his assumption that the measurement outcome statistics of an observable are to be represented in terms of a single (selfadjoint) operator.

References

  1. von Neumann, J.: Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1927, 245–272 (1927)

    Google Scholar 

  2. Dirac, P.: The Principles of Quantum Mechanics, 4th edn. Oxford, Clarendon Press (1981)

    MATH  Google Scholar 

  3. von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Die Grundlehren der mathematischen Wissenschaften, Band 38. Springer-Verlag, Berlin (1968). (Reprint of the 1932 original)

    Google Scholar 

  4. Hughston, L.P., Jozsa, R., Wootters, W.K.: A complete classification of quantum ensembles having a given density matrix. Phys. Lett. A 183(1), 14–18 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  5. Hadjisavvas, N.: Properties of mixtures on non-orthogonal states. Lett. Math. Phys. 5, 327–332 (1981). July

    Article  ADS  MathSciNet  Google Scholar 

  6. Cassinelli, G., De Vito, E., Levrero, A.: On the decompositions of a quantum state. J. Math. Anal. Appl. 210(2), 472–483 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Davies, E.B.: Quantum Theory of Open Systems. Academic Press, New York (1976)

    MATH  Google Scholar 

  8. Lahti, P., Mączyński, M.: Partial order of quantum effects. J. Math. Phys. 36(4), 1673–1680 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Gleason, A.M.: Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 6, 885–893 (1957)

    MathSciNet  MATH  Google Scholar 

  10. R. S. Ingarden. Information theory and thermodynamics of light. I. Foundations of information theory. Fortschr. Physik, 12, 567–594 (1964)

    Google Scholar 

  11. Holevo, A.S.: Statistical Structure of Quantum Theory. Lecture Notes in Physics, vol. 67. Monographs. Springer, Berlin (2001)

    Google Scholar 

  12. Heinosaari, T., Pellonpää, J.-P.: Generalized coherent states and extremal positive operator valued measures. J. Phys. A 45(24), 244019 (2012)

    Google Scholar 

  13. Cassinelli, G., De Vito, E., Lahti, P., Levrero, A.: The Theory of Symmetry Actions in Quantum Mechanics—With an application to the Galilei group. Lecture Notes in Physics, vol. 654. Springer-Verlag, Berlin (2004)

    Google Scholar 

  14. Molnár, L.: Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, vol. 1895. Springer, Heidelberg (2007)

    Google Scholar 

  15. Varadarajan, V.S.: Geometry of Quantum Theory, 2nd edn. Springer-Verlag, New York (1985)

    MATH  Google Scholar 

  16. Mackey, G.W.: Unitary Group Representations in Physics, Probability, and Number Theory, 2nd edn. Advanced Book Classics. Addison-Wesley Publishing Company Advanced Book Program, Redwood City (1989)

    MATH  Google Scholar 

  17. Mackey, G.W.: Axiomatics of particle interactions. In Proceedings of the International Quantum Structures Association, Part I (Castiglioncello, 1992), vol. 32, pp 1643–1659 (1993)

    Google Scholar 

  18. Cassinelli, G., Zanghì, N.: Conditional probabilities in quantum mechanics. I. Conditioning with respect to a single event. Nuovo Cim. B (11), 73(2), 237–245 (1983)

    Google Scholar 

  19. Cassinelli, G., Zanghì, N.: Conditional probabilities in quantum mechanics. II. Additive conditional probabilities. Nuovo Cim. B (11), 79(2), 141–154 (1984)

    Google Scholar 

  20. Aerts, D., Daubechies, I.: Physical justification for using the tensor product to describe two quantum systems as one joint system. Helv. Phys. Acta, 51(5-6), 661–675 (1979), (1978)

    Google Scholar 

  21. Pulmannová, S.: Tensor products of Hilbert space effect algebras. Rep. Math. Phys. 53(2), 301–316 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Werner, R.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  Google Scholar 

  23. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Cirel\(^{\prime }\)son, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4(2), 93–100 (1980)

    Google Scholar 

  25. Khalfin, L.A., Tsirelson, B.S.: Quantum and quasiclassical analogs of Bell inequalities. In: Symposium on the Foundations of Modern Physics (Joensuu, 1985), pp. 441–460. World Scientific Publishing, Singapore (1985)

    Google Scholar 

  26. Scholz, V.B., Werner, R.F.: Tsirelson’s problem (2008). arXiv:0812.4305

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Busch .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Busch, P., Lahti, P., Pellonpää, JP., Ylinen, K. (2016). States, Effects and Observables. In: Quantum Measurement. Theoretical and Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-43389-9_9

Download citation

Publish with us

Policies and ethics