Skip to main content

Time and Energy

  • Chapter
  • First Online:
Quantum Measurement

Part of the book series: Theoretical and Mathematical Physics ((TMP))

  • 2837 Accesses

Abstract

Space and time have a double role in quantum mechanics. On the one hand, they form the arena for physical events; physical systems occur in spacetime. On the other hand, the symmetries of the underlying spacetime specify the description of the system and dictate its basic properties. In the relativistic case spacetime symmetries are expressed with respect to the Poincaré group, while in the nonrelativistic case the relevant symmetry group is the Galilei group. This Chap. 17 presents an analysis of covariant time observables in the case of classical Hamiltonian mechanics and analogous considerations in quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The one-dimensional case of this theorem extends easily to the three-dimensional case.

  2. 2.

    In Galilei relativistic quantum mechanics the structure of the evolution generator, the energy operator, is determined to a large extent by the symmetry requirements [13]. Here we recall only that for a spinless free particle moving in \(\mathbb R^3\), \(H=\frac{1}{2m}\varvec{P}^2\) whereas it is of the form \(H=\frac{1}{2m}\sum _{i=1}^3(\varvec{P}-\varvec{A}(\varvec{Q}))^2 + V(\varvec{Q})\) if the particle is moving in an external field described by vector and scalar potentials \(\varvec{A}:\mathbb R^3\rightarrow \mathbb R^3\) and \(V:\mathbb R^3\rightarrow \mathbb R\) (measurable functions), respectively. Here \(\varvec{P}=(P_1,P_2,P_3), \; \varvec{Q}=(Q_1,Q_2,Q_3)\).

  3. 3.

    This is the set of states \(\varrho \) whose eigenvectors belong to the domain of \(T^{(0)}\).

References

  1. Mackey, G.W.: Unitary Group Representations in Physics, Probability, and Number Theory. Advanced Book Classics, 2nd edn. Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA (1989)

    MATH  Google Scholar 

  2. Varadarajan, V.S.: Geometry of Quantum Theory, 2nd edn. Springer, New York (1985)

    MATH  Google Scholar 

  3. Cassinelli, G., De Vito, E., Lahti, P., Levrero, A.: The Theory of Symmetry Actions in Quantum Mechanics - With an application to the Galilei Group. Lecture Notes in Physics, vol. 654. Springer, Berlin (2004)

    MATH  Google Scholar 

  4. Pauli, W.: General Principles of Quantum Mechanics. Springer, Berlin (1980). Translated from the German original of 1933 by P. Achuthan and K. Venkatesan

    Google Scholar 

  5. Muga, J.G., Mayato, R.S., Egusquiza, Í.L. (eds.): Time in Quantum Mechanics vol. 1. Volume 734 of Lecture Notes in Physics, 2nd edn. Springer, Berlin (2008)

    Google Scholar 

  6. Muga, J.G., Ruschhaupt, A., del Campo, A. (eds.): Time in Quantum Mechanics vol. 2. Volume 789 of Lecture Notes in Physics. Springer, Berlin (2009)

    Google Scholar 

  7. Thirring, W.: Quantum Mathematical Physics. Atoms, Molecules and Large Systems, 2nd edn. Springer, Berlin (2002). Translated from the 1979 and 1980 German originals by Evans M. Harrell II

    Google Scholar 

  8. Kiukas, J., Ruschhaupt, A., Schmidt, P.O., Werner, R.F.: Exact energy-time uncertainty relation for arrival time by absorption. J. Phys. A 45(18), 185301 (2012). 13

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Busch, P.: The time-energy uncertainty relation. In: Muga, J., Mayato, R., Egusquiza, Ã. (eds.) Time in Quantum Mechanics. Lecture Notes in Physics, vol. 734, pp. 73–105. Springer, Berlin Heidelberg (2007)

    Google Scholar 

  10. Werner, R.: Screen observables in relativistic and nonrelativistic quantum mechanics. J. Math. Phys. 27(3), 793–803 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  11. Kiukas, J., Ruschhaupt, A., Werner, R.F.: Tunneling times with covariant measurements. Found. Phys. 39(7), 829–846 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Kholevo, A.S.: Generalized imprimitivity systems for abelian groups. Soviet Math. (Iz. VUZ) 27(2), 53–80 (1983)

    MathSciNet  MATH  Google Scholar 

  13. Dixmier, J.: Von Neumann Algebras Volume 27 North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam (1981). Translated from the second French edition by F. Jellett

    Google Scholar 

  14. Cattaneo, U.: On Mackey’s imprimitivity theorem. Comment. Math. Helv. 54(4), 629–641 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Haapasalo, E., Pellonpää, J.-P.: Extreme covariant quantum observables in the case of an Abelian symmetry group and a transitive value space. J. Math. Phys. 52(12), 122102, 23 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory Volume 1 North-Holland Series in Statistics and Probability. North-Holland Publishing Co., Amsterdam (1982). Translated from the Russian by the author

    Google Scholar 

  17. Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space. Dover Publications Inc., New York (1993). Translated from the Russian and with a preface by Merlynd Nestell, Reprint of the 1961 and 1963 translations, Two volumes bound as one

    MATH  Google Scholar 

  18. Dubin, D.A., Kiukas, J., Pellonpää, J.-P., Ylinen, K.: Operator integrals and sesquilinear forms. J. Math. Anal. Appl. 413(1), 250–268 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Brunetti, R., Fredenhagen, K.: Time of occurrence observable in quantum mechanics. Phys. Rev. A (3) 66(4), 044101 (2002)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Busch .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Busch, P., Lahti, P., Pellonpää, JP., Ylinen, K. (2016). Time and Energy. In: Quantum Measurement. Theoretical and Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-43389-9_17

Download citation

Publish with us

Policies and ethics