Skip to main content

Measurement Uncertainty

  • Chapter
  • First Online:
Quantum Measurement

Part of the book series: Theoretical and Mathematical Physics ((TMP))

  • 2887 Accesses

Abstract

In Chap. 11 we have seen that noncommutativity prohibits the joint measurability of two sharp observables but not necessarily that of two unsharp observables. We have also observed that adding noise to two incompatible observables can turn them into jointly measurable observables. This leads to the idea of realising an approximate joint measurement of two incompatible sharp observables by means of a joint measurement of two compatible, possibly unsharp observables. In this chapter we develop tools to quantify the approximation errors and the degrees of unsharpness necessary to achieve compatible approximations. This will prepare the ground for formulating measurement uncertainty relations, which make precise Heisenberg’s intuitive formulations of 1927 (Heisenberg, Z Physik 43:172–198, 1927).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This notion of measurement error based on the statistical differences between observables was proposed, for instance, by Ludwig [2, pp. 197–198].

  2. 2.

    Again, an extension to \(\alpha =\infty \) is possible [4] but will not be considered here.

  3. 3.

    It may happen that the measurement noise operator \(A_\mathrm{out}-A_\mathrm{in}\) is unbounded; in this case appropriate care has to be taken with the specification of the states \(\varrho \otimes \sigma \) for which the expectation values are well defined.

References

  1. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Physik 43, 172–198 (1927)

    Article  ADS  Google Scholar 

  2. Ludwig, G.: Foundations of Quantum Mechanics. I. Texts and Monographs in Physics. Springer, New York (1983). Translated from the German by Hein, C.A

    Google Scholar 

  3. Villani, C.: Optimal Transport - Old and New. Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009)

    Google Scholar 

  4. Busch, P., Lahti, P., Werner, R.F.: Measurement uncertainty relations. J. Math. Phys. 55, 042111 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Busch, P., Pearson, D.: Universal joint-measurement uncertainty relation for error bars. J. Math. Phys. 48(8), 082103 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Werner, R.: The uncertainty relation for joint measurement of position and momentum. Quantum Inf. Comput. 4(6–7), 546–562 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Busch, P., Pearson, D.: Error and unsharpness in approximate joint measurements of position and momentum (2014). arXiv:1405.6956

  8. Busch, P., Stevens, N.: Direct tests of measurement uncertainty relations: What it takes. Phys. Rev. Lett. 114(7), 070402 (2015)

    Article  ADS  Google Scholar 

  9. Haus, H.A., Mullen, J.A.: Quantum noise in linear amplifiers. Phys. Rev. 128, 2407–2413 (1962)

    Article  ADS  Google Scholar 

  10. Haus, H.A.: Quantum noise, quantum measurement, and squeezing. J. Opt. B 6(8), S626 (2004)

    Article  ADS  Google Scholar 

  11. Yamamoto, Y., Haus, H.A.: Preparation, measurement and information capacity of optical quantum states. Rev. Mod. Phys. 58, 1001–1020 (1986)

    Article  ADS  Google Scholar 

  12. Clerk, A.A., Devoret, M.H., Girvin, S.M., Marquardt, F., Schoelkopf, R.J.: Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Arthurs, E., Kelly, J.: On the simultaneous measurements of a pair of conjugate observables. Bell Syst. Tech. 44, 725–729 (1965)

    Article  Google Scholar 

  14. Arthurs, E., Goodman, M.: Quantum correlations: a generalized Heisenberg uncertainty relation. Phys. Rev. Lett. 60(24), 2447 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  15. Ozawa, M.: Uncertainty relations for noise and disturbance in generalized quantum measurements. Ann. Phys. 311(2), 350–416 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Busch, P., Lahti, P., Werner, R.: Quantum root-mean-square error and measurement uncertainty relations. Rev. Mod. Phys. 86, 1261–1281 (2014)

    Article  ADS  Google Scholar 

  17. Appleby, D.M.: Concept of experimental accuracy and simultaneous measurements of position and momentum. Int. J. Theor. Phys. 37(5), 1491–1509 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Appleby, D.M.: Error principle. Int. J. Theor. Phys. 37(10), 2557–2572 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Polterovich, L.: Quantum unsharpness and symplectic rigidity. Lett. Math. Phys. 1–20 (2012)

    Google Scholar 

  20. Polterovich, L.: Symplectic geometry of quantum noise. Commun. Math. Phys. 327(2), 481–519 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Carmeli, C., Heinonen, T., Toigo, A.: Intrinsic unsharpness and approximate repeatability of quantum measurements. J. Phys. A 40(6), 1303–1323 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Miyadera, T., Imai, H.: Heisenberg’s uncertainty principle for simultaneous measurement of positive-operator-valued measures. Phys. Rev. A 78, 052119 (2008)

    Article  ADS  Google Scholar 

  23. Schwonnek, R., Reeb, D., Werner, R.F.: Measurement uncertainty for finite quantum observables (2016). arXiv:1604.00382

    Google Scholar 

  24. Bohr, N.: The quantum postulate and the recent development of atomic theory. Nature 121, Suppl., 580–590 (1928). Symposium on the Foundations of Modern Physics. 1987 (Joensuu, 1987), pp. 1–18. World Sci. Publ, Teaneck, NJ (1987)

    Google Scholar 

  25. Miyadera, T.: Uncertainty relations for joint localizability and joint measurability in finite-dimensional systems. J. Math. Phys. 52(7):072105 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Busch .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Busch, P., Lahti, P., Pellonpää, JP., Ylinen, K. (2016). Measurement Uncertainty. In: Quantum Measurement. Theoretical and Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-43389-9_13

Download citation

Publish with us

Policies and ethics