Skip to main content

Preoperative Evaluation of Right Ventricular Function

  • Chapter
  • First Online:
Mechanical Circulatory Support in End-Stage Heart Failure

Abstract

Left ventricular assist devices (LVADs) are safer and provide better quality of life than biventricular assist devices (BVADs), but end-stage heart failure (HF) often involves both ventricles, even if left-sided heart disease was its initial cause. Although LVADs can facilitate RV improvement, severe right ventricular failure (RVF) can persist after LVAD implantation inducing high risks for death even if LVAD implantation is later followed by additional RV assist device (RVAD) implantation. The incidence of RVF requiring a RVAD after LVAD implantation is ~10% [1, 2]. Thus, it is crucial to identify preoperatively or at latest intraoperatively those patients who definitely need a BVAD. The decision between LVAD and BVAD is challenging and involves many clinical, hemodynamic, biochemical, and echocardiographic criteria [3]. Preoperative evaluation of RV function is a cornerstone for that decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vivo RP, Cordero-Reyes AM, Qamar U et al (2013) Increased right-to-left diameter ratio is a strong predictor of right ventricular failure after left ventricular assist device. J Heart Lung Transplant 32:792–799

    Article  PubMed  Google Scholar 

  2. Potapov E, Meyer D, Swaminathan M et al (2011) Inhaled nitric oxide after left ventricular assist device implantation: a prospective, randeomized, double-blind, multicenter, placebo- controlled trial. J Heart Lung Transplant 30:870–878

    PubMed  Google Scholar 

  3. Dandel M, Krabatsch T, Falk V (2015) Left ventricular vs. biventricular mechanical support: decision making and strategies for avoidance of right heart failure after left ventricular assist device implantation. Int J Cardiol 198:241–250

    Article  PubMed  Google Scholar 

  4. Mann DL (2012) Pathophysiology of heart failure. In: Bonow R, Mann DL, Zipes DP, Libby P (eds) Braunwald’s heart disease. A textbook of cardiovascular medicine, 9th edn, pp 487–504

    Chapter  Google Scholar 

  5. Cheng W, Kajstura J, Li P, Wolin MS, Sonnenblick EH et al (1995) Stretch-induced programmed myocyte cell death. J Clin Invest 96:2247–2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dandel M, Potapov E, Krabatsch T et al (2013) Load dependency of right ventricular performance is a major factor to be considered in decision making before ventricular assist device implantation. Circulation 128(11):S14–S23

    Article  PubMed  Google Scholar 

  7. Kukucka M, Potapov E, Stepaneko A et al (2011) Acute impact of left ventricular unloading by left ventricular assist device on right ventricle geometry and function: effect of nitric oxide inhalation. J Thorac Cardiovasc Surg 141:1009–1014

    Article  PubMed  Google Scholar 

  8. Rudski LG, Lai WW, Afilalo J et al (2010) Guidelines for echocardiographic assessment of right heart in adults: a report of the American Society of Echocardiography. J Am Soc Echocardiogr 23:685–713

    Article  PubMed  Google Scholar 

  9. Anavekar NS, Gerson D, Skali H et al (2007) Two-dimensional assessment of right ventricular function. An echocardiographic-MRI correlative study. Echocardiography 24:452–456

    Article  PubMed  Google Scholar 

  10. Focardi M, Cameli M, Carbone SF et al (2015) Traditional and innovative echocardiographic parameters for the analysis of right ventricular performance in comparison with cardiac magnetic resonance. Eur Heart J Cardiovasc Imaging 16:47–52

    Article  PubMed  Google Scholar 

  11. Topilsky Y, Oh JK, Dipesh KS et al (2011) Echocardiographic predictors of adverse outcomes after continuous left ventricular assist device implantation. J Am Coll Cardiol Imaging 4:211–222

    Article  Google Scholar 

  12. Lindqvist P, Waldenström A, Wikström G, Kazzam E (2005) The use of isovolumetric contraction velocity to determine right ventricular state of contractility and filling pressures. A pulsed Doppler tissue imaging study. Eur J Echocardiogr 6:264–270

    Article  PubMed  Google Scholar 

  13. Dandel M, Hetzer R (2009) Echocardiographic strain and strain rate imaging – Clinical applications. Int J Cardiol 132(1):11–24

    Article  PubMed  Google Scholar 

  14. Dandel M, Knosalla C, Kemper D et al (2015) Assessment of right ventricular adaptability to loading conditions can improve the timing of listing to transplantation in patients with pulmonary arterial hypertension. J Heart Lung Transplant 34(3):319–328

    Article  PubMed  Google Scholar 

  15. Cameli M, Bernazzali S, Lisi M et al (2013–2015) Right ventricular longitudinal strain and right ventricular stroke work index in patients with severe heart failure: Left ventricular assist device suitability for transplant candidates. Transplant Proc 2012:44

    Google Scholar 

  16. Di Maria MV, Burkett DA, Youoszai MD et al (2015) Echocardiographic estimation of right ventricular stroke work in children with pulmonary arterial hypertension. Comparison with invasive methods. JASE online 23

    Google Scholar 

  17. Frea S, Bovolo V, Bergerone S et al (2012) Echocardiographic evaluation of right ventricular stroke work index in advanced heart failure: A new index? J Card Fail 18(12):886–893

    Article  PubMed  Google Scholar 

  18. Guazzi M, Bandera F, Pelissero G et al (2013) Tricuspid annular systollic excursion and pulmonary artery pressure relationship in heart failure: An index of right ventricular function and prognosis. Am J Physiol Heart Circ Physiol 305(9):H1373–H1381

    Article  CAS  PubMed  Google Scholar 

  19. Lopez-Candales A, Lopez FR, Trivedi S, Elwing J (2014) Right ventricular ejection efficiency: A new echocardiographic measure of mechanical performance in chronic pulmonary hypertension. Echocardiography 31:516–523

    Article  PubMed  Google Scholar 

  20. Shiran H, Zamanian RT, McConnell MV et al (2014) Relationship between echocardiographic and magnetic resonance derived measures of right ventricular size and function in patients with Pulmonary Hypertension. Am Soc Echocardiogr 27(4):405–412

    Article  Google Scholar 

  21. Ryo K, Goda A, Onishi T (2015) Pulmonary hypertension associated with patient outcomes by 3-dimensional wall motion tracking Echocardiography. Circ Cardiovasc Imaging 8:e003176

    Article  PubMed  Google Scholar 

  22. Matthews JC, Koelling T, Pagani F, Aaronson K (2008) The right ventricular failure risk score a preoperative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol 51:2163–2172

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lembcke A, Dohmen PM, Dewey M et al (2005) Multislice computed tomography for pre-operative evaluation of right ventricular volumes and function: comparison with magnetic resonance imaging. Ann Thorac Surg 79(4):1344–1351

    Article  PubMed  Google Scholar 

  24. Ochiai Y, McCarthy P, Smedira N et al (2002) Predictors of severe right ventricular failure after implantable assist device insertion: analysis of 245 patients. Circulation 106(Suppl):1198–1202

    Google Scholar 

  25. Potapov EV, Stepanenko A, Dandel M et al (2008) Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device. J Heart Lung Transplant 27:1275–1281

    Article  PubMed  Google Scholar 

  26. Kukucka M, Stepanenko A, Potapov E et al (2011) Right-to-left ventricular end-diastolic diameter and prediction of right ventricular failure with continuous-flow left ventricular assist devices. J Heart Lung Transplant 30:64–69

    Article  PubMed  Google Scholar 

  27. Kormos RL, Teutenberg JJ, Pagani FD et al (2010) Right ventricular failure in patients with the HeartMate II continuous flow left ventricular assist device: incidence, risk factors and effect on outcomes. J Thorac Cardiovasc Surg 139(5):1316–1324

    Article  PubMed  Google Scholar 

  28. Drakos SG, Janicki L, Horne BD et al (2010) Risk factors of right ventricular failure after left ventricular assist device implantation. Am J Cardiol 105:1030–1035

    Article  PubMed  Google Scholar 

  29. Grant ADM, Smedira GN, Starling RC, Marwick TH (2012) Independent and incremental role of quantitative right ventricular evaluation for prediction of right ventricular failure after ventricular assist device implantation. J Am Coll Cardiol 60:521–528

    Article  PubMed  Google Scholar 

  30. Shiga T, Kinugawa K, Imamura T et al (2012) Combination evaluation of preoperative risk indices predicts requirement of biventricular assist device. Circ J 76:2785–2791

    Article  PubMed  Google Scholar 

  31. Fitzpatrick JR III, Frederick JR, Hsu VM et al (2008) Risk score derived from preoperative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant 27(12):1286–1292

    Article  PubMed  PubMed Central  Google Scholar 

  32. Raina A, Harish R, Rammohan S et al (2013) Postoperative right ventricular failure after left ventricular assist device placement is predicted by preoperative echocardiographic structural, hemodynamic and functional parameters. J Card Fail 19:16–24

    Article  PubMed  Google Scholar 

  33. Kato ST, Farr M, Schulze PC et al (2012) Usefulness of two-dimensional echocardiographic parameters of the left side of the heart to predict right ventricular failure after left ventricular assist device implantation. Am J Cardiol 109:246–251

    Article  PubMed  Google Scholar 

  34. Atluri P, Goldstone AB, Fairman AS et al (2013) Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg 96:857–864

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Dandel MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dandel, M., Potapov, E.V., Moazami, N. (2017). Preoperative Evaluation of Right Ventricular Function. In: Montalto, A., Loforte, A., Musumeci, F., Krabatsch, T., Slaughter, M. (eds) Mechanical Circulatory Support in End-Stage Heart Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-43383-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43383-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43381-3

  • Online ISBN: 978-3-319-43383-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics