Skip to main content

Abstract

Minimal Change Disease (MDC) is the most common type of nephrotic syndrome in childhood. Currently, advancements in podocyte biology suggest that podocyte may play a pathogenic role in the development of proteinuria in this disease. In the majority of children, MCD presents a relapsing pattern that may persist to adulthood. Steroids are considered the drug of choice to control proteinuria. Recently, new therapeutic modalities including ACTH and rituximab have been tried with variable results. There is a need for multicenter, randomized, controlled studies to define the efficacy of these drugs in MCD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACTH:

Adrenocorticotrophic hormone

Angptl-4 :

Angiopoietin-like 4

APN:

Arbeitsgemeinschaft für Pädiatrische Nephrologie

ASMase:

Acid-sphingomyelinase

BUN:

Blood urea nitrogen

CCT:

Cortical collecting tubule

CD80 :

Cluster of differentiation 80

CNI:

Calcineurin inhibitor

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4.

ENaC:

Epithelial sodium channel

FDA:

Food and Drug Administration

FP:

Foot processes

FR:

Frequent relapsing

FR:

Frequent relapsing

FSGS:

Focal segmental glomerulosclerosis

g:

Grams

GBM :

Glomerular basement mkembrane

HSP:

Heparan-sulfate proteoglycans

IFN:

Interferon

Ig:

Immunoglobulin.

IL:

Interleukin

INS:

Idiopathic nephrotic syndrome

ISKDC :

International Study of Kidney Disease of Children

IV:

Intravenous

kDa:

Kilodalton

KDIGO:

Kidney Disease: Improving Global Outcomes

kg:

Kilograms

LPS:

Polysaccharide

ManNAc:

Acetylated N-acetylmannosamine

MC1R:

Mineralcorticoid-1 receptor

MCD:

Minimal Change Disease

mEq:

Milliequivalents

mg:

Milligrams

MMF:

Mycophenolate mofetil

PA:

Puromycin aminoglycoside

PBMC:

Peripheral mononuclear cells

PDGF:

Platelet-derived growth factor

PHN:

Passive Heymann nephritis

pI:

Isoelectric point

Poly:IC:

Polyinosinic:polycytidylic acid

RCT:

Randomized controlled trial

SCID:

Severe combined immunodeficient

SD:

Steroid-dependent

SMPDL-3b:

Sphingomyelin phosphodiesterase acid-like 3 b protein

TG:

Transgenic

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

URI:

Upper respiratory infection.

VEGF:

Vascular endothelial growth factor

Vs:

Versus

References

  1. Churg J, Habib R, White RH. Pathology of the nephrotic syndrome in children: a report for the International Study of Kidney Disease in Children. Lancet. 1970;760(1):1299–302.

    Article  CAS  PubMed  Google Scholar 

  2. The primary nephrotic syndrome in children. Identification of patients with minimal change nephrotic syndrome from initial response to prednisone. A report of the International Study of Kidney Disease in Children. J Pediatr. 1981;98(4):561–4.

    Google Scholar 

  3. Primary nephrotic syndrome in children: clinical significance of histopathologic variants of minimal change and of diffuse mesangial hypercellularity. A Report of the International Study of Kidney Disease in Children. Kidney Int. 1981;20(6):765–71.

    Google Scholar 

  4. Habib R, Kleinknecht C. The primary nephrotic syndrome of childhood. Classification and clinicopathologic study of 406 cases. Pathol Annu. 1971;6:417–74.

    CAS  PubMed  Google Scholar 

  5. Korbet SM, Genchi RM, Borok RZ, Schwartz MM. The racial prevalence of glomerular lesions in nephrotic adults. Am J Kidney Dis. 1996;27(5):647–51.

    Article  CAS  PubMed  Google Scholar 

  6. Glassock RJ. Secondary minimal change disease. Nephrol Dial Transplant. 2003;18 Suppl 6:vi52–8.

    PubMed  Google Scholar 

  7. Eagen JW. Glomerulopathies of neoplasia. Kidney Int. 1977;11(5):297–303.

    Article  CAS  PubMed  Google Scholar 

  8. Kramer P, Sizoo W, Twiss EE. Nephrotic syndrome in Hodgkin’s disease. Report of five cases and review of the literature. Neth J Med. 1981;24(3):114–9.

    CAS  PubMed  Google Scholar 

  9. Plager J, Stutzman L. Acute nephrotic syndrome as a manifestation of active Hodgkin’s Disease. Report of four cases and review of the literature. Am J Med. 1971;50(1):56–66.

    Article  CAS  PubMed  Google Scholar 

  10. Audard V, Zhang SY, Copie-Bergman C, Rucker-Martin C, Ory V, Candelier M, et al. Occurrence of minimal change nephrotic syndrome in classical Hodgkin lymphoma is closely related to the induction of c-mip in Hodgkin-Reed Sternberg cells and podocytes. Blood. 2010;115(18):3756–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kobayashi Y, Arakawa H, Suzuki M, Takizawa T, Tokuyama K, Morikawa A. Polymorphisms of interleukin-4--related genes in Japanese children with minimal change nephrotic syndrome. Am J Kidney Dis. 2003;42(2):271–6.

    Article  CAS  PubMed  Google Scholar 

  12. Spink C, Stege G, Tenbrock K, Harendza S. The CTLA-4 +49GG genotype is associated with susceptibility for nephrotic kidney diseases. Nephrol Dial Transplant. 2013;28(11):2800–5.

    Article  CAS  PubMed  Google Scholar 

  13. Shalhoub RJ. Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet. 1974;2(7880):556–60.

    Article  CAS  PubMed  Google Scholar 

  14. Daniel V, Trautmann Y, Konrad M, Nayir A, Scharer K. T-lymphocyte populations, cytokines and other growth factors in serum and urine of children with idiopathic nephrotic syndrome. Clin Nephrol. 1997;47(5):289–97.

    CAS  PubMed  Google Scholar 

  15. Neuhaus TJ, Wadhwa M, Callard R, Barratt TM. Increased IL-2, IL-4 and interferon-gamma (IFN-gamma) in steroid-sensitive nephrotic syndrome. Clin Exp Immunol. 1995;100(3):475–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Printza N, Papachristou F, Tzimouli V, Taparkou A, Kanakoudi-Tsakalidou F. IL-18 is correlated with type-2 immune response in children with steroid sensitive nephrotic syndrome. Cytokine. 2008;44(2):262–8.

    Article  CAS  PubMed  Google Scholar 

  17. Shimoyama H, Nakajima M, Naka H, Maruhashi Y, Akazawa H, Ueda T, et al. Up-regulation of interleukin-2 mRNA in children with idiopathic nephrotic syndrome. Pediatr Nephrol. 2004;19(10):1115–21.

    Article  PubMed  Google Scholar 

  18. Kanai T, Shiraishi H, Yamagata T, Ito T, Odaka J, Saito T, et al. Th2 cells predominate in idiopathic steroid-sensitive nephrotic syndrome. Clin Exp Nephrol. 2010;14(6):578–83.

    Article  CAS  PubMed  Google Scholar 

  19. Cheong HI, Lee JH, Hahn H, Park HW, Ha IS, Choi Y. Circulating VEGF and TGF-beta1 in children with idiopathic nephrotic syndrome. J Nephrol. 2001;14(4):263–9.

    CAS  PubMed  Google Scholar 

  20. Webb NJ, Watson CJ, Roberts IS, Bottomley MJ, Jones CA, Lewis MA, et al. Circulating vascular endothelial growth factor is not increased during relapses of steroid-sensitive nephrotic syndrome. Kidney Int. 1999;55(3):1063–71.

    Article  CAS  PubMed  Google Scholar 

  21. Garin EH, Blanchard DK, Matsushima K, Djeu JY. IL-8 production by peripheral blood mononuclear cells in nephrotic patients. Kidney Int. 1994;45(5):1311–7.

    Article  CAS  PubMed  Google Scholar 

  22. Cho MH, Lee HS, Choe BH, Kwon SH, Chung KY, Koo JH, et al. Interleukin-8 and tumor necrosis factor-alpha are increased in minimal change disease but do not alter albumin permeability. Am J Nephrol. 2003;23(4):260–6.

    Article  CAS  PubMed  Google Scholar 

  23. Garin EH, Laflam P, Chandler L. Anti-interleukin 8 antibody abolishes effects of lipoid nephrosis cytokine. Pediatr Nephrol. 1998;12(5):381–5.

    Article  CAS  PubMed  Google Scholar 

  24. Lai KW, Wei CL, Tan LK, Tan PH, Chiang GS, Lee CG, et al. Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J Am Soc Nephrol. 2007;18(5):1476–85.

    Article  CAS  PubMed  Google Scholar 

  25. Ishimoto T, Cara-Fuentes G, Wang H, Shimada M, Wasserfall CH, Winter WE, et al. Serum from minimal change patients in relapse increases CD80 expression in cultured podocytes. Pediatr Nephrol. 2013;28(9):1803–12.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yap HK, Cheung W, Murugasu B, Sim SK, Seah CC, Jordan SC. Th1 and Th2 cytokine mRNA profiles in childhood nephrotic syndrome: evidence for increased IL-13 mRNA expression in relapse. J Am Soc Nephrol. 1999;10(3):529–37.

    CAS  PubMed  Google Scholar 

  27. Bridges CR, Myers BD, Brenner BM, Deen WM. Glomerular charge alterations in human minimal change nephropathy. Kidney Int. 1982;22(6):677–84.

    Article  CAS  PubMed  Google Scholar 

  28. Brenner BM, Hostetter TH, Humes HD. Glomerular permselectivity: barrier function based on discrimination of molecular size and charge. Am J Physiol. 1978;234(6):F455–60.

    CAS  PubMed  Google Scholar 

  29. Carrie BJ, Salyer WR, Myers BD. Minimal change nephropathy: an electrochemical disorder of the glomerular membrane. Am J Med. 1981;70(2):262–8.

    Article  CAS  PubMed  Google Scholar 

  30. Graham Jr RC, Karnovsky MJ. Glomerular permeability. Ultrastructural cytochemical studies using peroxidases as protein tracers. J Exp Med. 1966;124(6):1123–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kanwar YS, Farquhar MG. Presence of heparan sulfate in the glomerular basement membrane. Proc Natl Acad Sci U S A. 1979;76(3):1303–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Washizawa K, Kasai S, Mori T, Komiyama A, Shigematsu H. Ultrastructural alteration of glomerular anionic sites in nephrotic patients. Pediatr Nephrol. 1993;7(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  33. Goldberg S, Harvey SJ, Cunningham J, Tryggvason K, Miner JH. Glomerular filtration is normal in the absence of both agrin and perlecan-heparan sulfate from the glomerular basement membrane. Nephrol Dial Transplant. 2009;24(7):2044–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van den Hoven MJ, Wijnhoven TJ, Li JP, Zcharia E, Dijkman HB, Wismans RG, et al. Reduction of anionic sites in the glomerular basement membrane by heparanase does not lead to proteinuria. Kidney Int. 2008;73(3):278–87.

    Article  PubMed  CAS  Google Scholar 

  35. Kavoura E, Gakiopoulou H, Paraskevakou H, Marinaki S, Agrogiannis G, Stofas A, et al. Immunohistochemical evaluation of podocalyxin expression in glomerulopathies associated with nephrotic syndrome. Hum Pathol. 2011;42(2):227–35.

    Article  CAS  PubMed  Google Scholar 

  36. Hara M, Yanagihara T, Takada T, Itoh M, Adachi Y, Yoshizumi A, et al. Podocalyxin on the glomerular epithelial cells is preserved well in various glomerular diseases. Nephron. 1994;67(1):123–4.

    Article  CAS  PubMed  Google Scholar 

  37. Barisoni L, Schnaper HW, Kopp JB. A proposed taxonomy for the podocytopathies: a reassessment of the primary nephrotic diseases. Clin J Am Soc Nephrol. 2007;2(3):529–42.

    Article  PubMed  Google Scholar 

  38. Shimada M, Araya C, Rivard C, Ishimoto T, Johnson RJ, Garin EH. Minimal change disease: a “two-hit” podocyte immune disorder? Pediatr Nephrol. 2011;26(4):645–9.

    Article  PubMed  Google Scholar 

  39. Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L, et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest. 2004;113(10):1390–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ishimoto T, Shimada M, Gabriela G, Kosugi T, Sato W, Lee PY, et al. Toll-like receptor 3 ligand, polyIC, induces proteinuria and glomerular CD80, and increases urinary CD80 in mice. Nephrol Dial Transplant. 2013;28(6):1439–46.

    Article  CAS  PubMed  Google Scholar 

  41. Shimada M, Ishimoto T, Lee PY, Lanaspa MA, Rivard CJ, Roncal-Jimenez CA, et al. Toll-like receptor 3 ligands induce CD80 expression in human podocytes via an NF-kappaB-dependent pathway. Nephrol Dial Transplant. 2012;27(1):81–9.

    Article  CAS  PubMed  Google Scholar 

  42. Garin EH, Diaz LN, Mu W, Wasserfall C, Araya C, Segal M, et al. Urinary CD80 excretion increases in idiopathic minimal-change disease. J Am Soc Nephrol. 2009;20(2):260–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Garin EH, Mu W, Arthur JM, Rivard CJ, Araya CE, Shimada M, et al. Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis. Kidney Int. 2010;78(3):296–302.

    Article  CAS  PubMed  Google Scholar 

  44. Cara-Fuentes G, Wei C, Segarra A, Ishimoto T, Rivard C, Johnson RJ, et al. CD80 and suPAR in patients with minimal change disease and focal segmental glomerulosclerosis: diagnostic and pathogenic significance. Pediatr Nephrol. 2014;29(8):1363–71.

    Article  PubMed  Google Scholar 

  45. Cara-Fuentes G, Wasserfall CH, Wang H, Johnson RJ, Garin EH. Minimal change disease: a dysregulation of the podocyte CD80-CTLA-4 axis? Pediatr Nephrol. 2014;29(12):2333–40.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ling C, Liu X, Shen Y, Chen Z, Fan J, Jiang Y, et al. Urinary CD80 levels as a diagnostic biomarker of minimal change disease. Pediatr Nephrol. 2015;30(2):309–16.

    Article  PubMed  Google Scholar 

  47. Garin EH, Reiser J, Cara-Fuentes G, Wei C, Matar D, Wang H, et al. Case series: CTLA4-IgG1 therapy in minimal change disease and focal segmental glomerulosclerosis. Pediatr Nephrol. 2015;30(3):469–77.

    Article  PubMed  Google Scholar 

  48. Uchida K, Suzuki K, Iwamoto M, Kawachi H, Ohno M, Horita S, et al. Decreased tyrosine phosphorylation of nephrin in rat and human nephrosis. Kidney Int. 2008;73(8):926–32.

    Article  CAS  PubMed  Google Scholar 

  49. Clement LC, Avila-Casado C, Mace C, Soria E, Bakker WW, Kersten S, et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med. 2011;17(1):117–22.

    Article  CAS  PubMed  Google Scholar 

  50. Clement LC, Mace C, Avila-Casado C, Joles JA, Kersten S, Chugh SS. Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome. Nat Med. 2014;20(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  51. Dijkman H, Smeets B, van der Laak J, Steenbergen E, Wetzels J. The parietal epithelial cell is crucially involved in human idiopathic focal segmental glomerulosclerosis. Kidney Int. 2005;68(4):1562–72.

    Article  PubMed  Google Scholar 

  52. Kappel B, Olsen S. Cortical interstitial tissue and sclerosed glomeruli in the normal human kidney, related to age and sex. A quantitative study. Virchows Arch A Pathol Anat Histol. 1980;387(3):271–7.

    Article  CAS  PubMed  Google Scholar 

  53. Lahdenkari AT, Lounatmaa K, Patrakka J, Holmberg C, Wartiovaara J, Kestila M, et al. Podocytes are firmly attached to glomerular basement membrane in kidneys with heavy proteinuria. J Am Soc Nephrol. 2004;15(10):2611–8.

    Article  PubMed  Google Scholar 

  54. Hamm LL, Batuman V. Edema in the nephrotic syndrome: new aspect of an old enigma. J Am Soc Nephrol. 2003;14(12):3288–9.

    Article  PubMed  Google Scholar 

  55. Nagase S, Shimamune K, Shumiya S. Albumin-deficient rat mutant. Science. 1979;205(4406):590–1.

    Article  CAS  PubMed  Google Scholar 

  56. Oliver WJ. Physiologic responses associated with steroid-induced diuresis in the nephrotic syndrome. J Lab Clin Med. 1963;62:449–64.

    CAS  PubMed  Google Scholar 

  57. Usberti M, Gazzotti RM, Poiesi C, D’Avanzo L, Ghielmi S. Considerations on the sodium retention in nephrotic syndrome. Am J Nephrol. 1995;15(1):38–47.

    Article  CAS  PubMed  Google Scholar 

  58. Ichikawa I, Rennke HG, Hoyer JR, Badr KF, Schor N, Troy JL, et al. Role for intrarenal mechanisms in the impaired salt excretion of experimental nephrotic syndrome. J Clin Invest. 1983;71(1):91–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Svenningsen P, Bistrup C, Friis UG, Bertog M, Haerteis S, Krueger B, et al. Plasmin in nephrotic urine activates the epithelial sodium channel. J Am Soc Nephrol. 2009;20(2):299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tojo A. The role of the kidney in protein metabolism: the capacity of tubular lysosomal proteolysis in nephrotic syndrome. Kidney Int. 2013;84(5):861–3.

    Article  CAS  PubMed  Google Scholar 

  61. Patiroglu T, Melikoglu A, Dusunsel R. Serum levels of C3 and factors I and B in minimal change disease. Acta Paediatr Jpn. 1998;40(4):333–6.

    Article  CAS  PubMed  Google Scholar 

  62. Black DA, Rose G, Brewer DB. Controlled trial of prednisone in adult patients with the nephrotic syndrome. Br Med J. 1970;3(5720):421–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Coggins CH. Adult minimal change nephropathy: experience of the collaborative study of glomerular disease. Trans Am Clin Climatol Assoc. 1986;97:18–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Arneil GC, Lam CN. Long-term assessment of steroid therapy in childhood nephrosis. Lancet. 1966;2(7468):819–21.

    Article  CAS  PubMed  Google Scholar 

  65. Lewis MA, Baildom EM, Davis N, Houston IB, Postlethwaite RJ. Nephrotic syndrome: from toddlers to twenties. Lancet. 1989;1(8632):255–9.

    Article  CAS  PubMed  Google Scholar 

  66. Wingen AM, Muller-Wiefel DE, Scharer K. Comparison of different regimens of prednisone therapy in frequently relapsing nephrotic syndrome. Acta Paediatr Scand. 1990;79(3):305–10.

    Article  CAS  PubMed  Google Scholar 

  67. Alwadhi RK, Mathew JL, Rath B. Clinical profile of children with nephrotic syndrome not on glucorticoid therapy, but presenting with infection. J Paediatr Child Health. 2004;40(1–2):28–32.

    Article  CAS  PubMed  Google Scholar 

  68. Abeyagunawardena AS, Trompeter RS. Increasing the dose of prednisolone during viral infections reduces the risk of relapse in nephrotic syndrome: a randomised controlled trial. Arch Dis Child. 2008;93(3):226–8.

    Article  CAS  PubMed  Google Scholar 

  69. Kestila M, Lenkkeri U, Mannikko M, Lamerdin J, McCready P, Putaala H, et al. Positionally cloned gene for a novel glomerular protein--nephrin--is mutated in congenital nephrotic syndrome. Mol Cell. 1998;1(4):575–82.

    Article  CAS  PubMed  Google Scholar 

  70. Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, Delfgaauw J, et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med. 2008;14(9):931–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ohashi T, Uchida K, Uchida S, Sasaki S, Nitta K. Dexamethasone increases the phosphorylation of nephrin in cultured podocytes. Clin Exp Nephrol. 2011;15(5):688–93.

    Article  CAS  PubMed  Google Scholar 

  72. Maher ER, Sweny P, Chappel M, Varghese Z, Moorhead JF. Cyclosporin in the treatment of steroid-responsive and steroid-resistant nephrotic syndrome in adults. Nephrol Dial Transplant. 1988;3(6):728–32.

    CAS  PubMed  Google Scholar 

  73. Warshaw BL, Hymes LC. Daily single-dose and daily reduced-dose prednisone therapy for children with the nephrotic syndrome. Pediatrics. 1989;83(5):694–9.

    CAS  PubMed  Google Scholar 

  74. Bagga A, Hari P, Srivastava RN. Prolonged versus standard prednisolone therapy for initial episode of nephrotic syndrome. Pediatr Nephrol. 1999;13(9):824–7.

    Article  CAS  PubMed  Google Scholar 

  75. Short versus standard prednisone therapy for initial treatment of idiopathic nephrotic syndrome in children. Arbeitsgemeinschaft fur Padiatrische Nephrologie. Lancet. 1988;1(8582):380–3.

    Google Scholar 

  76. Garin EH, Pryor ND, Fennell 3rd RS, Richard GA. Pattern of response to prednisone in idiopathic, minimal lesion nephrotic syndrome as a criterion in selecting patients for cyclophosphamide therapy. J Pediatr. 1978;92(2):304–8.

    Article  CAS  PubMed  Google Scholar 

  77. Ehrich JH, Brodehl J. Long versus standard prednisone therapy for initial treatment of idiopathic nephrotic syndrome in children. Arbeitsgemeinschaft fur Padiatrische Nephrologie. Eur J Pediatr. 1993;152(4):357–61.

    Article  CAS  PubMed  Google Scholar 

  78. Lande MB, Gullion C, Hogg RJ, Gauthier B, Shah B, Leonard MB, et al. Long versus standard initial steroid therapy for children with the nephrotic syndrome. A report from the Southwest Pediatric Nephrology Study Group. Pediatr Nephrol. 2003;18(4):342–6.

    PubMed  Google Scholar 

  79. Hiraoka M, Tsukahara H, Matsubara K, Tsurusawa M, Takeda N, Haruki S, et al. A randomized study of two long-course prednisolone regimens for nephrotic syndrome in children. Am J Kidney Dis. 2003;41(6):1155–62.

    Article  CAS  PubMed  Google Scholar 

  80. KDIGO. KDIGO clinical practice guideline for glomerulonephritis. Kidney Int Suppl. 2012;2:163–80.

    Google Scholar 

  81. Pasini A, Aceto G, Ammenti A, Ardissino G, Azzolina V, Bettinelli A, et al. Best practice guidelines for idiopathic nephrotic syndrome: recommendations versus reality. Pediatr Nephrol. 2015;30(1):91–101.

    Article  PubMed  Google Scholar 

  82. Alternate-day prednisone is more effective than intermittent prednisone in frequently relapsing nephrotic syndrome. A report of "Arbeitsgemeinschaft fur Padiatrische Nephrologie. Eur J Pediatr. 1981;135(3):229–37.

    Google Scholar 

  83. Hahn D, Hodson EM, Willis NS, Craig JC. Corticosteroid therapy for nephrotic syndrome in children. Cochrane Database Syst Rev. 2015;3:Cd001533.

    PubMed  Google Scholar 

  84. Engle JE, Schoolwerth AC. Late recurrence of corticosteroid-responsive nephrotic syndrome of childhood. JAMA. 1980;243(18):1840–1.

    Article  CAS  PubMed  Google Scholar 

  85. Fakhouri F, Bocquet N, Taupin P, Presne C, Gagnadoux MF, Landais P, et al. Steroid-sensitive nephrotic syndrome: from childhood to adulthood. Am J Kidney Dis. 2003;41(3):550–7.

    Article  PubMed  Google Scholar 

  86. Trompeter RS, Lloyd BW, Hicks J, White RH, Cameron JS. Long-term outcome for children with minimal-change nephrotic syndrome. Lancet. 1985;1(8425):368–70.

    Article  CAS  PubMed  Google Scholar 

  87. Koskimies O, Vilska J, Rapola J, Hallman N. Long-term outcome of primary nephrotic syndrome. Arch Dis Child. 1982;57(7):544–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Effect of cytotoxic drugs in frequently relapsing nephrotic syndrome with and without steroid dependence. N Engl J Med. 1982;306(8):451–4.

    Google Scholar 

  89. Prospective, controlled trial of cyclophosphamide therapy in children with nephrotic syndrome. Report of the International study of Kidney Disease in Children. Lancet. 1974;2(7878):423–7.

    Google Scholar 

  90. Cyclophosphamide treatment of steroid dependent nephrotic syndrome: comparison of eight week with 12 week course. Report of Arbeitsgemeinschaft fur Padiatrische Nephrologie. Arch Dis Child. 1987;62(11):1102–6.

    Google Scholar 

  91. Ueda N, Kuno K, Ito S. Eight and 12 week courses of cyclophosphamide in nephrotic syndrome. Arch Dis Child. 1990;65(10):1147–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ponticelli C, Edefonti A, Ghio L, Rizzoni G, Rinaldi S, Gusmano R, et al. Cyclosporin versus cyclophosphamide for patients with steroid-dependent and frequently relapsing idiopathic nephrotic syndrome: a multicentre randomized controlled trial. Nephrol Dial Transplant. 1993;8(12):1326–32.

    CAS  PubMed  Google Scholar 

  93. Kengne-Wafo S, Massella L, Diomedi-Camassei F, Gianviti A, Vivarelli M, Greco M, et al. Risk factors for cyclosporin A nephrotoxicity in children with steroid-dependant nephrotic syndrome. Clin J Am Soc Nephrol. 2009;4(9):1409–16.

    Article  CAS  PubMed  Google Scholar 

  94. Gellermann J, Weber L, Pape L, Tonshoff B, Hoyer P, Querfeld U. Mycophenolate mofetil versus cyclosporin A in children with frequently relapsing nephrotic syndrome. J Am Soc Nephrol. 2013;24(10):1689–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dorresteijn EM, Kist-van Holthe JE, Levtchenko EN, Nauta J, Hop WC, van der Heijden AJ. Mycophenolate mofetil versus cyclosporine for remission maintenance in nephrotic syndrome. Pediatr Nephrol. 2008;23(11):2013–20.

    Article  PubMed  Google Scholar 

  96. Yoshioka K, Ohashi Y, Sakai T, Ito H, Yoshikawa N, Nakamura H, et al. A multicenter trial of mizoribine compared with placebo in children with frequently relapsing nephrotic syndrome. Kidney Int. 2000;58(1):317–24.

    Article  CAS  PubMed  Google Scholar 

  97. Abramowicz M, Barnett HL, Edelmann Jr CM, Greifer I, Kobayashi O, Arneil GC, et al. Controlled trial of azathioprine in children with nephrotic syndrome. A report for the international study of kidney disease in children. Lancet. 1970;1(7654):959–61.

    Article  CAS  PubMed  Google Scholar 

  98. Donia AF, Ammar HM, El-Agroudy Ael B, Moustafa Fel H, Sobh MA. Long-term results of two unconventional agents in steroid-dependent nephrotic children. Pediatr Nephrol. 2005;20(10):1420–5.

    Article  PubMed  Google Scholar 

  99. Dayal U, Dayal AK, Shastry JC, Raghupathy P. Use of levamisole in maintaining remission in steroid-sensitive nephrotic syndrome in children. Nephron. 1994;66(4):408–12.

    Article  CAS  PubMed  Google Scholar 

  100. Barnett HL, Mc NH, Mc CW, Forman C, Rapoport M, Michie A, et al. The effects of ACTH and cortisone on the nephrotic syndrome. AMA Am J Dis Child. 1950;80(3):519–20.

    CAS  PubMed  Google Scholar 

  101. Lindskog A, Ebefors K, Johansson ME, Stefansson B, Granqvist A, Arnadottir M, et al. Melanocortin 1 receptor agonists reduce proteinuria. J Am Soc Nephrol. 2010;21(8):1290–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bomback AS, Tumlin JA, Baranski J, Bourdeau JE, Besarab A, Appel AS, et al. Treatment of nephrotic syndrome with adrenocorticotropic hormone (ACTH) gel. Drug Des Devel Ther. 2011;5:147–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bomback AS, Canetta PA, Beck Jr LH, Ayalon R, Radhakrishnan J, Appel GB. Treatment of resistant glomerular diseases with adrenocorticotropic hormone gel: a prospective trial. Am J Nephrol. 2012;36(1):58–67.

    Article  CAS  PubMed  Google Scholar 

  104. Cara-Fuentes G, Kairalla JA, Ishimoto T, Rivard C, Johnson RJ, Garin EH. Rituximab in idiopath nephrotic syndrome: does it make sense? Pediatr Nephrol. 2014;29(8):1313–9.

    Article  PubMed  Google Scholar 

  105. Fornoni A, Sageshima J, Wei C, Merscher-Gomez S, Aguillon-Prada R, Jauregui AN, et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med. 2011;3(85):85ra46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Magnasco A, Ravani P, Edefonti A, Murer L, Ghio L, Belingheri M, et al. Rituximab in children with resistant idiopathic nephrotic syndrome. J Am Soc Nephrol. 2012;23(6):1117–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ravani P, Magnasco A, Edefonti A, Murer L, Rossi R, Ghio L, et al. Short-term effects of rituximab in children with steroid- and calcineurin-dependent nephrotic syndrome: a randomized controlled trial. Clin J Am Soc Nephrol. 2011;6(6):1308–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ravani P, Rossi R, Bonanni A, Quinn RR, Sica F, Bodria M, et al. Rituximab in children with steroid-dependent nephrotic syndrome: a multicenter, open-label, noninferiority, randomized controlled trial. J Am Soc Nephrol. 2015;26(9):2259–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Iijima K, Sako M, Nozu K, Mori R, Tuchida N, Kamei K, et al. Rituximab for childhood-onset, complicated, frequently relapsing nephrotic syndrome or steroid-dependent nephrotic syndrome: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet. 2014;384(9950):1273–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo H. Garin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cara-Fuentes, G.M., Johnson, R.J., Garin, E.H. (2016). Minimal Change Disease. In: Blaine, J. (eds) Proteinuria: Basic Mechanisms, Pathophysiology and Clinical Relevance. Springer, Cham. https://doi.org/10.1007/978-3-319-43359-2_6

Download citation

Publish with us

Policies and ethics