Advertisement

Systems Biology Application in Feed Efficiency in Beef Cattle

  • Heidge FukumasuEmail author
  • Miguel Henrique Santana
  • Pamela Almeida Alexandre
  • José Bento Sterman Ferraz
Chapter
  • 533 Downloads

Abstract

Feed efficiency could be defined as the capacity to generate products with a certain amount of food provided; therefore, the performance and feed intake (FI) are the main components that influence this capacity. In beef cattle, this aims to improve the production both by reducing feed costs, which accounts for a large part of total costs, and by increasing muscle and adipose tissue growth. It is common sense that many physiological processes are involved in the regulation of this trait, such as feed intake, digestion, body composition, metabolism, activity, behavior and thermoregulation. Here, we review the importance of feed efficiency for cattle production, discussing its biological bases from a holistic point of view, finalizing with the possible use of systems biology to improve this important phenotype for animal production.

Keywords

Feed Intake Beef Cattle Feed Efficiency System Biology Approach Residual Feed Intake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aggrey SE, Rekaya R (2013) Dissection of Koch’s residual feed intake: implications for selection. Poult Sci 92:2600–2605. doi: 10.3382/ps.2013-03302 CrossRefPubMedGoogle Scholar
  2. Alexandre P a et al (2014) Bovine NR1I3 gene polymorphisms and its association with feed efficiency traits in Nellore cattle. Meta Gene 2:206–217, Available at: http://linkinghub.elsevier.com/retrieve/pii/S2214540014000048. Accessed 15 Aug 2014CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alexandre PA et al (2015) Liver transcriptomic networks reveal main biological processes associated with feed efficiency in beef cattle. BMC Genomics 16(1):1073. Available at: http://www.biomedcentral.com/1471-2164/16/1073
  4. Al-Husseini W et al (2014) Expression of candidate genes for residual feed intake in Angus cattle. Anim Genetics 45(1):12–19. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24134470. Accessed 1 Feb 2015Google Scholar
  5. Al-Husseini W et al (2015) Characterization and profiling of liver microRNAs by RNA-sequencing in cattle divergently selected for residual feed intake. Asian-Australasian J Anim Sci. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26954124. Accessed 10 May 2016
  6. Archer JA et al (1999) Potential for selection to improve efficiency of feed use in beef cattle: a review. Aust J Agr Res 50(2):147–162, Available at: http://www.publish.csiro.au/paper/A98075.htm. Accessed 29 Feb 2016CrossRefGoogle Scholar
  7. Arthur P, Renand G, Krauss D (2001a) Genetic parameters for growth and feed efficiency in weaner versus yearling Charolais bulls. Aust J Exp Agric 52:471–476CrossRefGoogle Scholar
  8. Arthur PF, Archer JA, Johnston DJ, Herd RM, Richardson EC, Parnell PF (2001b) Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle. J Anim Sci 79:2805–2811Google Scholar
  9. Arthur PF, Herd RM, Wilkins JF, Archer JA (2005) Maternal productivity of Angus cows divergently selected for post-weaning residual feed intake. Aust J Exp Agric 45:985. doi: 10.1071/EA05052 CrossRefGoogle Scholar
  10. Atchley WR, Anderson D (1978) Ratios and the statistical analysis of biological data. Syst Zool 27:71. doi: 10.2307/2412816 CrossRefGoogle Scholar
  11. Barwick S a, Wolcott ML, Johnston DJ, Burrow HM, Sullivan MT (2009) Genetics of steer daily and residual feed intake in two tropical beef genotypes, and relationships among intake, body composition, growth and other post-weaning measures. Animal Prod Sci 49:351. doi: 10.1071/EA08249 CrossRefGoogle Scholar
  12. Basarab J a et al (2003) Residual feed intake and body composition in young growing cattle. Can J Anim Sci 83(2):189–204, Available at: http://pubs.aic.ca/doi/abs/10.4141/A02-065 CrossRefGoogle Scholar
  13. Basarab JA, McCartney D, Okine EK, Baron VS (2007) Relationships between progeny residual feed intake and dam productivity traits. Can J Anim Sci 87:489–502. doi: 10.4141/CJAS07026 CrossRefGoogle Scholar
  14. Berry DP, Crowley JJ (2012) Residual intake and body weight gain: a new measure of efficiency in growing cattle. J Anim Sci 90:109–115. doi: 10.2527/jas.2011-4245 CrossRefPubMedGoogle Scholar
  15. Cafe LM et al (2011) Temperament and hypothalamic-pituitary-adrenal axis function are related and combine to affect growth, efficiency, carcass, and meat quality traits in Brahman steers. Domest Anim Endocrinol 40(4):230–240, Available at: http://www.sciencedirect.com/science/article/pii/S0739724011000063. Accessed 21 Feb 2016CrossRefPubMedGoogle Scholar
  16. Canovas A, Reverter A, DeAtley KL et al (2014) Multi-tissue omics analyses reveal molecular regulatory networks for puberty in composite beef. PLoS One 9(7), e102551. doi: 10.1371/journal.pone.0102551Cattle CrossRefPubMedPubMedCentralGoogle Scholar
  17. Castro Bulle FCP et al (2007) Growth, carcass quality, and protein and energy metabolism in beef cattle with different growth potentials and residual feed intakes. J Anim Sci 85(4):928–936. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17178805. Accessed 1 Mar 2016Google Scholar
  18. Chaves AS et al (2015) Relationship of efficiency indices with performance, heart rate, oxygen consumption, blood parameters, and estimated heat production in Nellore steers. J Anim Sci 93(10):5036–5046. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26523596. Accessed 28 Feb 2016Google Scholar
  19. Chen Y et al (2011) Global gene expression profiling reveals genes expressed differentially in cattle with high and low residual feed intake. Anim Genetics 42(5):475–490. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21906099. Accessed 14 Apr 2012Google Scholar
  20. Chen L et al (2014) Phenotypic and genetic relationships of feeding behavior with feed intake, growth performance, feed efficiency, and carcass merit traits in Angus and Charolais steers. J Anim Sci 92(3):974–983. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24492561. Accessed 21 Feb 2016Google Scholar
  21. Connor EE et al (2010) Enhanced mitochondrial complex gene function and reduced liver size may mediate improved feed efficiency of beef cattle during compensatory growth. Funct Integrat Genomics 10(1):39–51. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19777276. Accessed 28 Feb 2016Google Scholar
  22. Crews DH (2005) Genetics of efficient feed utilization and national cattle evaluation: a review. Genet Mol Res 4:152–165PubMedGoogle Scholar
  23. Ferraz JBS, Felício PE (2010) Production systems – an example from Brazil. Meat Sci 84:238–243CrossRefPubMedGoogle Scholar
  24. Fitzhugh HA Jr, Taylor CS (1971) Genetic analysis of degree of maturity. J Anim Sci 33:717–725CrossRefPubMedGoogle Scholar
  25. Fontoura ABP et al (2016) Associations between feed efficiency, sexual maturity and fertility-related measures in young beef bulls. Animal Int J Anim Biosci 10(1):96–105. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26351012. Accessed 2 Mar 2016Google Scholar
  26. Foote AP et al (2016) Leptin concentrations in finishing beef steers and heifers and their association with dry matter intake, average daily gain, feed efficiency, and body composition. Domestic Anim Endocrinol 55:136–141. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26851619. Accessed 23 Feb 2016Google Scholar
  27. Francisco CL et al (2015) Impacts of temperament on Nellore cattle: physiological responses, feedlot performance, and carcass characteristics. J Anim Sci 93(11):5419. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26641061. Accessed 21 Feb 2016Google Scholar
  28. Gomes RC et al (2012) Feedlot performance, feed efficiency reranking, carcass traits, body composition, energy requirements, meat quality and calpain system activity in Nellore steers with low and high residual feed intake. Livest Sci 150(1-3):265–273, Available at: http://www.sciencedirect.com/science/article/pii/S1871141312003587. Accessed 19 Feb 2014CrossRefGoogle Scholar
  29. Gonano C et al (2014) The relationship between feed efficiency and the circadian profile of blood plasma analytes measured in beef heifers at different physiological stages. Anim 8(10):1684–1698. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24923431. Accessed 28 Feb 2016Google Scholar
  30. Grion AL, Mercadante MEZ, Cyrillo JNSG, Bonilha SFM, Magnani E, Branco RH (2014) Selection for feed efficiency traits and correlated genetic responses in feed intake and weight gain of Nellore cattle. J Anim Sci 92:955–965. doi: 10.2527/jas.2013-6682 CrossRefPubMedGoogle Scholar
  31. Gunsett FC (1984) Linear index selection to improve traits defined as ratios. J Anim Sci 59:1185–1193. doi: 10.2134/jas1984.5951185x CrossRefGoogle Scholar
  32. Hannun YA, Obeid LM (2002) The Ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem 277(29):25847–25850. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12011103. Accessed 3 July 2015Google Scholar
  33. Hegarty RS, Goopy JP, Herd RM, McCorkell B (2007) Cattle selected for lower residual feed intake have reduced daily methane production. J Anim Sci 85:1479–1486. doi: 10.2527/jas.2006-236 CrossRefPubMedGoogle Scholar
  34. Herd RM, Arthur PF (2009) Physiological basis for residual feed intake. J Anim Sci 87(14 Suppl):E64–E71, Available at: http://jas.fass.org/cgi/content/abstract/87/14_suppl/E64. Accessed 28 Mar 2012CrossRefPubMedGoogle Scholar
  35. Herd RM, Oddy VH, Richardson EC (2004) Biological basis for variation in residual feed intake in beef cattle. 1. Review of potential mechanisms. Aust J Exp Agric 44(5):423. Available at: http://www.publish.csiro.au/view/journals/dsp_journal_fulltext.cfm?nid=72&f=EA02220. Accessed 18 Apr 2012
  36. Hoque MA, Katoh K, Suzuki K (2009) Genetic associations of residual feed intake with serum insulin-like growth factor-I and leptin concentrations, meat quality, and carcass cross sectional fat area ratios in Duroc pigs. J Anim Sci 87(10):3069–3075, Available at: https://www.animalsciencepublications.org/publications/jas/abstracts/87/10/3069. Accessed 23 Feb 2016CrossRefPubMedGoogle Scholar
  37. Huntington GB et al (1988) Net absorption and oxygen consumption by Holstein steers fed alfalfa or orchardgrass silage at two equalized intakes. J Anim Sci 66(5):1292–1302. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3397352. Accessed 13 Jan 2015Google Scholar
  38. Jing L et al (2015) Transcriptome analysis of mRNA and miRNA in skeletal muscle indicates an important network for differential residual feed intake in pigs. Sci Rep 5:11953, Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4493709&tool=pmcentrez&rendertype=abstract. Accessed 6 Apr 2016CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kadarmideen HN (2014) Genomics to systems biology in animal and veterinary sciences: Progress, lessons and opportunities. Livestock Sci 166(2014):232–248. doi: 10.1016/j.livsci.2014.04.028 Google Scholar
  40. Karisa B, Moore S, Plastow G (2014) Analysis of biological networks and biological pathways associated with residual feed intake in beef cattle. Anim Sci J = Nihon chikusan Gakkaihō 85(4):374–387. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24373146. Accessed 1 Feb 2015Google Scholar
  41. Kelly AK, McGee M, Crews DH, Fahey AG et al (2010a) Effect of divergence in residual feed intake on feeding behavior, blood metabolic variables, and body composition traits in growing beef heifers. J Anim Sci 88(1):109–123. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19820067. Accessed 21 Feb 2016Google Scholar
  42. Kelly AK, McGee M, Crews DH, Sweeney T et al (2010b) Repeatability of feed efficiency, carcass ultrasound, feeding behavior, and blood metabolic variables in finishing heifers divergently selected for residual feed intake. J Anim Sci 88(10):3214–3225. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20525931. Accessed 21 Feb 2016Google Scholar
  43. Kennedy BW, van der Werf JH, Meuwissen TH (1993) Genetic and statistical properties of residual feed intake. J Anim Sci 71:3239–3250PubMedGoogle Scholar
  44. KLEIBER M (1947) Body size and metabolic rate. Physiol Rev 27:511–541PubMedGoogle Scholar
  45. Knockaert L, Fromenty B, Robin M-A (2011) Mechanisms of mitochondrial targeting of cytochrome P450 2E1: physiopathological role in liver injury and obesity. FEBS J 278(22):4252–4260. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21929725. Accessed 2 Feb 2015Google Scholar
  46. Koch RM, Swiger LA, Chambers D, Gregory KE (1963) Efficiency of feed use in beef cattle. J Anim Sci 22:486–494CrossRefGoogle Scholar
  47. Lancaster PA et al (2014) Relationships between residual feed intake and hepatic mitochondrial function in growing beef cattle. J Anim Sci 92(7):3134–3141. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24894006. Accessed 29 Feb 2016Google Scholar
  48. Lechtenberg KF et al (1988) Bacteriologic and histologic studies of hepatic abscesses in cattle. Am J Veterinary Res 49(1):58–62. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3354968. Accessed 1 Feb 2015
  49. Liu H et al (2016) Post-weaning blood transcriptomic differences between Yorkshire pigs divergently selected for residual feed intake. BMC Genomics 17(1):73. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4724083&tool=pmcentrez&rendertype=abstract. Accessed 1 Feb 2016
  50. Lobato JFP et al (2014) Brazilian beef produced on pastures: sustainable and healthy. Meat Sci 98:336–345CrossRefPubMedGoogle Scholar
  51. Lu D, Miller S, Sargolzaei M, Kelly M, Vander Voort G, Caldwell T, Wang Z, Plastow G, Moore S (2013) Genome-wide association analyses for growth and feed efficiency traits in beef cattle. J Anim Sci 91:3612–3633. doi: 10.2527/jas.2012-5716 CrossRefPubMedGoogle Scholar
  52. Mader CJ et al (2009) Relationships among measures of growth performance and efficiency with carcass traits, visceral organ mass, and pancreatic digestive enzymes in feedlot cattle. J Anim Sci 87(4):1548–1557. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18952722. Accessed 30 Jan 2015Google Scholar
  53. Mani V et al (2013) Intestinal integrity, endotoxin transport and detoxification in pigs divergently selected for residual feed intake. J Anim Sci 91(5):2141–2150. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23463550. Accessed 1 Mar 2016Google Scholar
  54. Martello LS et al (2016) Infrared thermography as a tool to evaluate body surface temperature and its relationship with feed efficiency in Bos indicus cattle in tropical conditions. Int J Biometeorol 60(1):173–181. Available at: http://www.ncbi.nlm.nih.gov/pubmed/260703691 Accessed 29 Feb 2016Google Scholar
  55. McGee M et al (2014) Relationships of feeding behaviors with average daily gain, dry matter intake, and residual feed intake in Red Angus-sired cattle. J Anim Sci 92(11):5214–5221. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25349363. Accessed 21 Feb 2016Google Scholar
  56. Meyer PM, Rodrigues PHM (2014) Progress in the Brazilian cattle industry: an analysis of the Agricultural Censuses database. Anim Product Sci 54:1338–1344Google Scholar
  57. Meyer AM et al (2014) Small intestinal growth measures are correlated with feed efficiency in market weight cattle, despite minimal effects of maternal nutrition during early to midgestation. J Anim Sci 92(9):3855–3867. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25057033. Accessed 28 Feb 2016Google Scholar
  58. Millen DD, Arrigoni MDB (2013) Drivers of change in animal protein production systems: Changes from‘traditional’ to ‘modern’ beef cattle production systems in Brazil. Anim Front 3(3):56–60Google Scholar
  59. Montaldo HH, Casas E, Ferraz JBS, Vega-Murillo VE, Roman-Ponce SI (2012) Opportunities and challenges from the use of genomic selection for beef cattle breeding in Latin America. Anim Front Rev Magazine Animal Agric 2:23–29Google Scholar
  60. Montanholi YR et al (2009) On the determination of residual feed intake and associations of infrared thermography with efficiency and ultrasound traits in beef bulls. Livest Sci 125(1):22–30, Available at: http://www.sciencedirect.com/science/article/pii/S1871141309000766. Accessed 29 Feb 2016CrossRefGoogle Scholar
  61. Montanholi YR et al (2010) Assessing feed efficiency in beef steers through feeding behavior, infrared thermography and glucocorticoids. Anim Int J Animal Biosci 4(5):692–701. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22444121. Accessed 29 Feb 2016Google Scholar
  62. Montanholi Y et al (2013) Small intestine histomorphometry of beef cattle with divergent feed efficiency. Acta veterinaria Scandinavica 55:9. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3598877&tool=pmcentrez&rendertype=abstract. Accessed 28 Feb 2016
  63. Myer PR et al (2015) Rumen microbiome from steers differing in feed efficiency. PloS One 10(6):e0129174. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4451142&tool=pmcentrez&rendertype=abstract. Accessed 1 Mar 2016
  64. Myer PR et al (2016) Microbial community profiles of the jejunum from steers differing in feed efficiency. J Anim Sci 94(1):327–338. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26812338. Accessed 27 Jan 2016
  65. Nagaraja TG, Lechtenberg KF (2007) Liver abscesses in feedlot cattle. The Veterinary clinics of North America. Food Anim Pract 23(2):351–369, ix. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17606156. Accessed 31 Jan 2015Google Scholar
  66. Nkrumah J, Okine E, Mathison G, Schmid K, Li C, Basarab JA, Price MA, Wang Z, Moore SS (2006) Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J Anim 84:145–153Google Scholar
  67. Nkrumah JD et al (2007) Genetic and phenotypic relationships of serum leptin concentration with performance, efficiency of gain, and carcass merit of feedlot cattle. J Anim Sci 85(9):2147–2155. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17468416. Accessed 23 Feb 2016Google Scholar
  68. Oliveira PSN, Cesar ASM, Nascimento ML, Chaves AS, Tizioto PC, Tullio RR, Lanna DPD, Rosa AN, Sonstegard TS, Mourao GB, Reecy JM, Garrick DJ, Mudadu MA, Coutinho LL, Regitano LCA (2014) Identification of genomic regions associated with feed efficiency in Nelore cattle. BMC Genet 15:100. doi: 10.1186/s12863-014-0100-0 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Owens FN et al (1998) Acidosis in cattle: a review. J Anim Sci 76(1):275–286. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9464909. Accessed 1 Feb 2015Google Scholar
  70. Paradis F et al (2015) Transcriptomic analysis by RNA sequencing reveals that hepatic interferon-induced genes may be associated with feed efficiency in beef heifers. J Anim Sci 93(7):3331–3341. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26440002. Accessed 8 Nov 2015Google Scholar
  71. Perkins SD, Key CN, Garrett CF et al (2014) Residual feed intake studies in Angus-sired cattle reveal a potential role for hypothalamic gene expression in regulating feed efficiency. J Anim Sci 92(2):549–560. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24398827. Accessed 23 Feb 2016Google Scholar
  72. Perkins SD, Key CN, Marvin MN et al (2014) Effect of residual feed intake on hypothalamic gene expression and meat quality in Angus-sired cattle grown during the hot season. J Anim Sci 92(4):1451–1461. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24663166. Accessed 23 Feb 2016Google Scholar
  73. Ramos MH, Kerley MS (2013) Mitochondrial complex I protein differs among residual feed intake phenotype in beef cattle. J Anim Sci 91(7):3299–3304. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23798519. Accessed 29 Feb 2016Google Scholar
  74. Randel RD, Welsh TH (2013) Joint Alpharma-Beef Species Symposium: interactions of feed efficiency with beef heifer reproductive development. J Anim Sci 91(3):1323–1328. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23048157. Accessed 2 Mar 2016Google Scholar
  75. Richardson EC et al (2004) Metabolic differences in Angus steers divergently selected for residual feed intake. Aust J Exp Agric 44(5):441. Available at: http://www.publish.csiro.au/view/journals/dsp_journal_fulltext.cfm?nid=72&f=EA02219. Accessed 18 Apr 2012
  76. Rolf MM, Taylor JF, Schnabel RD, McKay SD, McClure MC, Northcutt SL, Kerley MS, Weaber RL (2012) Genome-wide association analysis for feed efficiency in Angus cattle. Anim Genet 43:367–374. doi: 10.1111/j.1365-2052.2011.02273.x CrossRefPubMedPubMedCentralGoogle Scholar
  77. Rolfe KM, Snelling WM, Nielsen MK, Freetly HC, Ferrell CL, Jenkins TG (2011) Genetic and phenotypic parameter estimates for feed intake and other traits in growing beef cattle, and opportunities for selection. J Anim Sci 89:3452–3459. doi: 10.2527/jas.2011-3961 CrossRefPubMedGoogle Scholar
  78. Santana MHA et al (2012) Feed efficiency and its correlations with carcass traits measured by ultrasound in Nellore bulls. Livest Sci 145(1-3):252–257, Available at: http://linkinghub.elsevier.com/retrieve/pii/S1871141312000686. Accessed 13 Jan 2015CrossRefGoogle Scholar
  79. Santana MH et al (2014a) Genome-wide association analysis of feed intake and residual feed intake in Nellore cattle. BMC Genetics 15(1):21. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24517472. Accessed 19 Feb 2014Google Scholar
  80. Santana MH et al (2014b) Single nucleotide polymorphisms in genes linked to ion transport and regulation of appetite and their associations with weight gain, feed efficiency and intake of Nellore cattle. Livestock Sci 165(1):33–36. Available at: http://dx.doi.org/10.1016/j.livsci.2014.04.004 Google Scholar
  81. Santana MHA et al (2014c) Genome-wide association study for feedlot average daily gain in Nellore cattle (Bos indicus). J Anim Breed Genet 131:210–216. doi: 10.1111/jbg.12084 Google Scholar
  82. Sartin JL, Whitlock BK, Daniel JA (2011) Triennial Growth Symposium: neural regulation of feed intake: modification by hormones, fasting, and disease. J Anim Sci 89(7):1991–2003. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21148776. Accessed 23 Feb 2016Google Scholar
  83. Seal CJ, Reynolds CK (1993) Nutritional implications of gastrointestinal and liver metabolism in ruminants. Nutrition Res Rev 6(1):185–208. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19094308. Accessed 28 Feb 2016Google Scholar
  84. Shaffer KS et al (2011) Residual feed intake, body composition, and fertility in yearling beef heifers. J Anim Sci 89(4):1028–1034. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21112981. Accessed 2 Mar 2016Google Scholar
  85. Sherman EL et al (2008) Polymorphisms and haplotypes in the bovine neuropeptide Y, growth hormone receptor, ghrelin, insulin-like growth factor 2, and uncoupling proteins 2 and 3 genes and their associations with measures of growth, performance, feed efficiency, and carcass meri. J Anim Sci 86(1):1–16. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17785604. Accessed 24 Feb 2016
  86. Sherman EL, Nkrumah JD, Moore SS (2010) Whole genome single nucleotide polymorphism associations with feed intake and feed efficiency in beef cattle. J Anim Sci 88:16–22. doi: 10.2527/jas.2008-1759 CrossRefPubMedGoogle Scholar
  87. Tizioto PC et al (2015) Global liver gene expression differences in Nelore steers with divergent residual feed intake phenotypes. BMC Genomics 16(1), Available at: http://www.biomedcentral.com/1471-2164/16/242
  88. van der Werf JHJ (2004) Is it useful to define residual feed intake as a trait in animal breeding programs? Aust J Exp Agric 44:405. doi: 10.1071/EA02105 CrossRefGoogle Scholar
  89. Vincent A et al (2015) Divergent selection for residual feed intake affects the transcriptomic and proteomic profiles of pig skeletal muscle. J Anim Sci 93(6):2745–2758. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26115262. Accessed 29 Feb 2016Google Scholar
  90. Widmann P, Reverter A, Fortes MRS et al (2013) A systems biology approach using metabolomic data reveals genes and pathways interacting to modulate divergent growth in cattle. BMC Genomics 14:798CrossRefPubMedPubMedCentralGoogle Scholar
  91. Xi YM et al (2015) Gene expression profiling of hormonal regulation related to the residual feed intake of Holstein cattle. Biochem Biophys Res Commun 465(1):19–25, Available at: http://www.sciencedirect.com/science/article/pii/S0006291X15303223. Accessed 23 Feb 2016CrossRefPubMedGoogle Scholar
  92. Zhao M, Li X, Qu H (2013) EDdb: a web resource for eating disorder and its application to identify an extended adipocytokine signaling pathway related to eating disorder. Science China. Life Sci 56(12):1086–1096. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24302289. Accessed 23 Feb 2016Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Heidge Fukumasu
    • 1
    Email author
  • Miguel Henrique Santana
    • 1
  • Pamela Almeida Alexandre
    • 1
  • José Bento Sterman Ferraz
    • 1
  1. 1.Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de AlimentosUniversidade de São PauloPirassununga, São PauloBrazil

Personalised recommendations