Skip to main content

Other Applications

  • 1491 Accesses

Part of the International Series in Operations Research & Management Science book series (ISOR,volume 246)

Abstract

This chapter contains miscellaneous computational probability applications. Section 15.1 concerns algorithms for calculating the probability distribution of the longest path of a series-parallel stochastic activity network with continuous activity durations.

Keywords

  • Activity Network
  • Critical Path
  • Activity Duration
  • Recursive Call
  • Parallel Reduction

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-43323-3_15
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-43323-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 15.1
Fig. 15.2
Fig. 15.3
Fig. 15.4
Fig. 15.5
Fig. 15.6
Fig. 15.7

References

  1. Abate J, Whitt W (1988) Transient behavior of the MM∕1 queue via Laplace transforms. Adv Appl Probab 20:145–178

    CrossRef  Google Scholar 

  2. Adlakha VG, Kulkarni VG (1989) A classified bibliography of research on stochastic PERT networks: 1966–1987. INFOR 27:272–296

    Google Scholar 

  3. Andrews DWK, Buchinsky M (2000) A three-step method for choosing the number of bootstrap repetitions. Econometrica 68:23–51

    CrossRef  Google Scholar 

  4. Andrews DWK, Buchinsky M (2002) On the number of bootstrap repetitions for BCa confidence intervals. Econometric Theory 18:962–984

    Google Scholar 

  5. Arnold BC, Balakrishnan N, Nagaraja HN (1992) A first course in order statistics. SIAM, Philadelphia

    Google Scholar 

  6. Balakrishnan N, Chen WWS (1997) CRC handbook of tables for order statistics from inverse Gaussian distributions with applications. CRC Press, Boca Raton

    Google Scholar 

  7. Banks J, Carson JS, Nelson BL, Nicol DM (2005) Discrete-event system simulation, 4th edn. Prentice-Hall, Upper Saddle River, New Jersey

    Google Scholar 

  8. Barr D, Zehna PW (1971) Probability. Brooks/Cole

    Google Scholar 

  9. Benford F (1938) The law of anomalous numbers. Proc Am Philos Soc 78: 551–572

    Google Scholar 

  10. Berger A, Hill, TP (2015) An introduction to Benford’s law. Princeton University Press, Princeton

    CrossRef  Google Scholar 

  11. Billingsley P (1995) Probability and measure, 3rd edn. Wiley, New York

    Google Scholar 

  12. Birnbaum ZW (1952) Numerical tabulation of the distribution of Kolomogorov’s statistic for finite sample size. J Am Stat Assoc 47:425–441

    CrossRef  Google Scholar 

  13. Box GEP, Jenkins GM (1994) Time series analysis: forecasting & control, 3rd edn. Prentice-Hall

    Google Scholar 

  14. Burr IW (1955) Calculation of exact sampling distribution of ranges from a discrete population. Ann Math Stat 26:530–532 (correction, volume 38, 280)

    Google Scholar 

  15. Carrano FM, Helman P, Veroff R (1998) Data abstraction and problem solving with C++: walls and mirrors, 2nd edn. Addison-Wesley Longman, Reading, Massachusetts

    Google Scholar 

  16. Casella G, Berger R (2002) Statistical inference, 2nd edn. Duxbury, Pacific Grove, California

    Google Scholar 

  17. Ciardo G, Leemis LM, Nicol D (1995) On the minimum of independent geometrically distributed random variables. Stat Probab Lett 23:313–326

    CrossRef  Google Scholar 

  18. Cook P, Broemeling LD (1995) Bayesian statistics using mathematica. Am Stat 49:70–76

    Google Scholar 

  19. D’Agostino RB, Stephens MA (1986) Goodness-of-fit techniques. Marcel Dekker, New York

    Google Scholar 

  20. David HA, Nagaraja HN (2003) Order statistics, 3rd edn. Wiley, New York

    CrossRef  Google Scholar 

  21. Devroye L (1996) Random variate generation in one line of code. In: Charnes J, Morrice D, Brunner D, Swain J (eds) Proceedings of the 1996 winter simulation conference. Institute of Electrical and Electronics Engineers, Coronado, CA, pp 265–272

    Google Scholar 

  22. Doss H, Chiang Y (1994) Choosing the resampling scheme when bootstrapping: a case study in reliability. J Am Stat Assoc 89:298–308

    CrossRef  Google Scholar 

  23. Drew JH, Glen AG, Leemis LM (2000) Computing the cumulative distribution function of the Kolmogorov–Smirnov statistic. Comput Stat Data Anal 34: 1–15

    CrossRef  Google Scholar 

  24. Duggan MJ, Drew JH, Leemis LM (2005) A test of randomness based on the distance between consecutive random number pairs. In: Kuhl ME, Steiger NM, Armstrong FB, Joines JA (eds) Proceedings of the 2005 winter simulation conference. Institute of Electrical and Electronics Engineers, Piscataway, New Jersey, pp 741–748

    CrossRef  Google Scholar 

  25. e Silva ES, Gail HR, Campos RV (1995) Calculating transient distributions of cumulative reward. In: Proceedings of the 1995 ACM SIGMETRICS joint international conference on measurement and modeling of computer systems, pp 231–240

    Google Scholar 

  26. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman & Hall, New York

    CrossRef  Google Scholar 

  27. Elmaghraby SE (1977) Activity networks: project planning and control by network models. Wiley, New York

    Google Scholar 

  28. Evans DL, Leemis LM (2000) Input modeling using a computer algebra system. In: Joines J, Barton R, Fishwick P, Kang K. (eds) Proceedings of the 2000 winter simulation conference. Institute of Electrical and Electronics Engineers, Piscataway, New Jersey, pp 577–586

    CrossRef  Google Scholar 

  29. Evans DL, Leemis LM (2004) Algorithms for determining the distributions of sums of discrete random variables. Math Comput Modell 40:1429–1452

    CrossRef  Google Scholar 

  30. Evans DL, Leemis LM, Drew JH (2006) The distribution of order statistics for discrete random variables with applications to bootstrapping. INFORMS J Comput 18:19–30

    CrossRef  Google Scholar 

  31. Evans DL, Drew JH, Leemis, LM (2008) The distribution of the Kolmogorov–Smirnov, Cramer–von Mises, and Anderson–Darling test statistics for exponential populations with estimated parameters. Commun Stat–Simul Comput 37:1396–1421

    CrossRef  Google Scholar 

  32. Fisher DL, Saisi D, Goldstein WM (1985) Stochastic PERT networks: OP diagrams, critical paths and the project completion time. Comput Oper Res 12:471–482

    CrossRef  Google Scholar 

  33. Fishman GS (2001) Discrete-event simulation: modeling, programming, and analysis. Springer, Berlin

    CrossRef  Google Scholar 

  34. Gafarian AV, Ancker CJ Jr, Morisaku T (1976) The problem of the initial transient in digital computer simulation. In: Proceedings of the 76 bicentennial conference on winter simulation, pp 49–51

    Google Scholar 

  35. Gehan EA (1965) A generalized Wilcoxon test for comparing arbitrarily singly-censored samples. Biometrika 52(parts 1 and 2):203–223

    Google Scholar 

  36. Ghosal S, Ghosh JK, Ramamoorthi RV (1999) Consistency issues in Bayesian nonparametrics. In: Ghosh S (ed) Asymptotics, nonparametrics and time series: a tribute to Madan Lal Puri. Statistics textbooks and monographs, vol 158. Marcel Dekker, New York, pp 639–667

    Google Scholar 

  37. Glen AG, Drew JH, Leemis LM (1997) A generalized univariate change-of-variable transformation technique. INFORMS J Comput 9:288–295

    CrossRef  Google Scholar 

  38. Glen AG, Evans DL, Leemis LM (2001) APPL: a probability programming language. Am Stat 55:156–166

    CrossRef  Google Scholar 

  39. Glen AG, Leemis LM, Drew JH (2004) Computing the distribution of the product of two continuous random variables. Comput Stat Data Anal 44: 451–464

    CrossRef  Google Scholar 

  40. Grassmann WK (1977) Transient solutions in Markovian queueing systems. Comput Oper Res 4:47–53

    CrossRef  Google Scholar 

  41. Grassmann WK (2008) Warm-up periods in simulation can be detrimental. Probab Eng Inform Sci 22:415–429

    CrossRef  Google Scholar 

  42. Grinstead CM, Snell JL (1997) Introduction to probability, 2nd rev. edn. American Mathematical Society, Providence, Rhode Island

    Google Scholar 

  43. Hagwood C (2009) An application of the residue calculus: the distribution of the sum of nonhomogeneous gamma variates. Am Stat 63:37–39

    CrossRef  Google Scholar 

  44. Hamilton JD (1994) Time series analysis. Princeton University Press, Princeton

    Google Scholar 

  45. Harter HL, Balakrishnan N (1996) CRC handbook of tables for the use of order statistics in estimation. CRC Press, Boca Raton

    Google Scholar 

  46. Hasting KJ (2006) Introduction to the mathematics of operations research with mathematica, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  47. Hill TP (1995) A statistical derivation of the significant-digit law. Stat Sci 86:354–363

    Google Scholar 

  48. Hill TP (1998) The first digit phenomenon. Am Sci 86:358–363

    CrossRef  Google Scholar 

  49. Hillier FS, Lieberman GJ (2010) Introduction to operations research, 9th edn. McGraw–Hill, New York

    Google Scholar 

  50. Hogg RV, Craig AT (1995) Introduction to the mathematical statistics, 5th edn. Prentice-Hall, Upper Saddle River, New Jersey

    Google Scholar 

  51. Hogg RV, Tanis EA (2001) Probability and statistical inference, 6th edn. Prentice-Hall, Upper Saddle River, New Jersey

    Google Scholar 

  52. Hogg RV, McKean JW, Craig AT (2005) Introduction to the mathematical statistics, 6th edn. Prentice-Hall, Upper Saddle River, New Jersey

    Google Scholar 

  53. Hutson AD, Ernst MD (2000) The exact bootstrap mean and variance of an L-estimator. J R Stat Soc Ser B 62:89–94

    CrossRef  Google Scholar 

  54. Jaakkola TS, Jordan MI (2000) Bayesian parameter estimation via variational methods. Stat Comput 10:25–37

    CrossRef  Google Scholar 

  55. Johnson NL, Kotz S, Balakrishnan N (1995) Continuous univariate distributions, vol 2, 2nd ed. Wiley, New York

    Google Scholar 

  56. Kaczynski WH, Leemis LM, Drew JH (2012) Transient queueing analysis. INFORMS J Comput 24:10–28

    CrossRef  Google Scholar 

  57. Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data, 2nd edn. Wiley, Hoboken, New Jersey

    CrossRef  Google Scholar 

  58. Karian ZA, Tanis EA (1999) Probability and statistics: explorations with Maple, 2nd edn. Prentice-Hall, Upper Saddle River, New Jersey

    Google Scholar 

  59. Kelton WD (1985) Transient exponential-Erlang queues and steady-state simulation. Commun ACM 28:741–749

    CrossRef  Google Scholar 

  60. Kelton WD, Law AM (1985) The transient behavior of the MMs queue, with implications for steady-state simulation. Oper Res 33:378–396

    CrossRef  Google Scholar 

  61. Khoshkenara A, Mahloojia H. (2013) A new test of randomness for Lehmer generators based on the Manhattan Distance Between Pairs. Commun Stat–Simul Comput 42:202–214

    CrossRef  Google Scholar 

  62. Kleinrock L (1975) Queueing systems. Wiley, New York

    Google Scholar 

  63. Knuth DE (1998) The art of computer programming, volume 2: seminumerical algorithms, 3rd edn. Addison-Wesley, Reading, Massachusetts

    Google Scholar 

  64. Kossovsky AE (2015) Benford’s law: theory, the general law of relative quantities, and forensic fraud detection applications. World Scientific, Singapore

    Google Scholar 

  65. L’Écuyer P, Cordeau J-F, Simard R (2000) Close-point spatial tests and their application to random number generators. Oper Res 48:308–317

    CrossRef  Google Scholar 

  66. Law AM (1975) A comparison of two techniques for determining the accuracy of simulation output. Technical Report 75–11, University of Wisconsin at Madison

    Google Scholar 

  67. Laplante PA (ed) (2001) Dictionary of computer science, engineering and technology. CRC Press

    Google Scholar 

  68. Larsen RJ, Marx ML (2001) An introduction to mathematical statistics and its applications, 3rd edn. Prentice-Hall, Upper Saddle River, New Jersey

    Google Scholar 

  69. Larsen RJ, Marx ML (2006) An introduction to mathematical statistics and its applications, 4th edn. Prentice-Hall, Upper Saddle River, New Jersey

    Google Scholar 

  70. Law AM (2015) Simulation modeling and analysis, 5th edn. McGraw-Hill, New York

    Google Scholar 

  71. Lawless JF (2003) Statistical models and methods for lifetime data, 2nd edn. Wiley, Hoboken, New Jersey

    Google Scholar 

  72. Leemis L (1995) Reliability: probabilistic models and statistical methods. Prentice-Hall, Upper Saddle River, New Jersey

    Google Scholar 

  73. Leemis L (2006) Lower system reliability bounds from binary failure data using bootstrapping. J Qual Technol 38:2–13

    Google Scholar 

  74. Leemis L, Schmeiser B, Evans D (2000) Survival distributions satisfying Benford’s law. Am Stat 54:236–241

    Google Scholar 

  75. Leemis LM, Duggan MJ, Drew JH, Mallozzi JA, Connell KW (2006) Algorithms to calculate the distribution of the longest path length of a stochastic activity network with continuous activity durations. Networks 48:143–165

    CrossRef  Google Scholar 

  76. Leguesdron P, Pellaumail J, Rubino G, Sericola B (1993) Transient analysis of the MM∕1 queue. Adv Appl Probab 25:702–713

    CrossRef  Google Scholar 

  77. Lehmer DH (1951) Mathematical methods in large-scale computing units. In: Proceedings of the 2nd symposium on large-scale calculating machinery. Harvard University Press, pp 141–146

    Google Scholar 

  78. Ley E (1996) On the peculiar distribution of the U.S. stock indices digits. Am Stat 50:311–313

    Google Scholar 

  79. Lieblein J, Zelen M (1956) Statistical investigation of the fatigue life of deep-groove ball bearings. J Res Natl Bur Stand 57:273–316

    CrossRef  Google Scholar 

  80. Maplesoft (2013) Maple, Version 17. Waterloo

    Google Scholar 

  81. Margolin BH, Winokur HS (1967) Exact moments of the order statistics of the geometric distribution and their relation to inverse sampling and reliability of redundant systems. J Am Stat Assoc 62:915–925

    CrossRef  Google Scholar 

  82. Marks CE, Glen AG, Robinson MW, Leemis LM (2014) Applying bootstrap methods to system reliability. Am Stat 68:174–182

    CrossRef  Google Scholar 

  83. Marsaglia G (1968) Random numbers fall mainly in the planes. Proc Natl Acad Sci 61:25–28

    CrossRef  Google Scholar 

  84. Martin JJ (1965) Distribution of the time through a directed, acyclic network. Oper Res 13:44–66

    CrossRef  Google Scholar 

  85. Martin MA (1990) On bootstrap iteration for coverage correction in confidence intervals. J Am Stat Assoc 85:1105–1118

    CrossRef  Google Scholar 

  86. Meeker WQ, Escobar LA (1998) Statistical methods for reliability data. Wiley, New York

    Google Scholar 

  87. Miller LH (1956) Table of percentage points of Kolmogorov statistics. J Am Stat Assoc 51:111–121

    CrossRef  Google Scholar 

  88. Miller S (ed) (2015) Benford’s law: theory & applications. Princeton University Press, Princeton

    Google Scholar 

  89. Miller I, Miller M (2004) John E. Freund’s mathematical statistics, 7th edn. Prentice-Hall, Upper Saddle River, New Jersey

    Google Scholar 

  90. Morisaku T (1976) Techniques for data-truncation in digital computer simulation. Ph.D. thesis, University of Southern California, Los Angeles

    Google Scholar 

  91. Nelson BL, Yamnitsky M (1998) Input modeling tools for complex problems. In: Medeiros DJ, Watson EF, Carson JS, Manivannan, MS (eds) Proceedings of the 1998 winter simulation conference. Institute of Electrical and Electronics Engineers, pp 105–112

    Google Scholar 

  92. Nicol D (2000) Personal communication

    Google Scholar 

  93. Nigrini M (1996) A taxpayer compliance application of Benford’s law. J Am Taxat Assoc 18:72–91

    Google Scholar 

  94. Odoni AR, Roth E (1983) Empirical investigation of the transient behavior of stationary queueing systems. Oper Res 31:432–455

    CrossRef  Google Scholar 

  95. Owen DB (1962) Handbook of statistical tables. Addison-Wesley, Reading, Massachusetts

    Google Scholar 

  96. Padgett WJ, Tomlinson MA (2003) Lower confidence bounds for percentiles of Weibull and Birnbaum–Saunders distributions. J Stat Comput Simul 73: 429–443

    CrossRef  Google Scholar 

  97. Park SK, Miller KW (1988) Random number generators: good ones are hard to find. Commun ACM 31:1192–1201

    CrossRef  Google Scholar 

  98. Parlar M (2000) Interactive operations research with Maple. Birkhäuser, Boston

    CrossRef  Google Scholar 

  99. Parthasarathy PR (1987) A transient solution to an MM∕1 queue: a simple approach. Adv Appl Probab 19:997–998

    CrossRef  Google Scholar 

  100. Parzen E (1960) Modern probability theory and its applications. Wiley, New York

    Google Scholar 

  101. Pegden CD, Rosenshine M (1982) Some new results for the MM∕1 queue. Manage Sci 28:821–828

    CrossRef  Google Scholar 

  102. Port SC (1994) Theoretical probability for applications. Wiley

    Google Scholar 

  103. Rice JA (2007) Mathematical statistics and data analysis, 3rd edn. Thompson and Brooks/Cole, Belmont, California

    Google Scholar 

  104. Rohatgi VK (1976) An introduction to probability theory and mathematical statistics. Wiley, New York

    Google Scholar 

  105. Rose C, Smith MD (2002) Mathematical statistics and mathematica. Springer, New York

    CrossRef  Google Scholar 

  106. Ross S (2006) A first course in probability, 7th edn. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  107. Ruskey F, Williams A (2008) Generating balanced parentheses and binary trees by prefix shifts. In: Proceedings of the 12th computing: the Australasian theory symposium (CATS2008), CRPIT, vol 77, pp 107–115

    Google Scholar 

  108. Shier DR (1991) Network reliability and algebraic structures. Oxford University Press, New York

    Google Scholar 

  109. Springer MD (1979) The algebra of random variables. Wiley, New York

    Google Scholar 

  110. Srivastava RC (1974) Two characterizations of the geometric distribution. J Am Stat Assoc 69:267–269

    CrossRef  Google Scholar 

  111. Stanley RP (1999) Enumerative combinatorics. Volume 62 of Cambridge studies in advanced mathematics. Cambridge University Press, Cambridge

    Google Scholar 

  112. Thompson P (2000) Getting normal probability approximations without using normal tables. College Math J 31:51–54

    Google Scholar 

  113. Trosset M (2001) Personal communication

    Google Scholar 

  114. Vargo E, Pasupathy R, Leemis L (2010) Moment-ratio diagrams for univariate distributions. J Qual Technol 42:276–286

    Google Scholar 

  115. Webb KH, Leemis LM (2014) Symbolic ARMA model analysis. Comput Econ 43:313–330

    CrossRef  Google Scholar 

  116. Weiss MA (1994) Data structures and algorithm analysis in C++. Addison-Wesley Publishing Company, Menlo Park, California

    Google Scholar 

  117. Weisstein EW (2016) “Generalized Hypergeometric Function” from MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/GeneralizedHypergeometricFunction.html

  118. Winston WL (2004) Operations research: applications and algorithms, 4th edn. Thompson, Belmont, California

    Google Scholar 

  119. Wolfram Research, Inc. (2013) Mathematica, Version 10, Champaign, IL

    Google Scholar 

  120. Woodward WA, Gray HL (1981) On the relationship between the S array and the Box–Jenkins method of ARMA model identification. J Am Stat Assoc 76:579–587

    CrossRef  Google Scholar 

  121. Woodward JA, Palmer CGS (1997) On the exact convolution of discrete random variables. Appl Math Comput 83:69–77

    Google Scholar 

  122. Yang JX, Drew JH, Leemis LM (2012) Automating bivariate transformations. INFORMS J Comput 24:1–9

    CrossRef  Google Scholar 

  123. Young DH (1970) The order statistics of the negative binomial distribution. Biometrika 57:181–186

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Drew, J.H., Evans, D.L., Glen, A.G., Leemis, L.M. (2017). Other Applications. In: Computational Probability. International Series in Operations Research & Management Science, vol 246. Springer, Cham. https://doi.org/10.1007/978-3-319-43323-3_15

Download citation