Advertisement

Moment-Ratio Diagrams for Univariate Distributions

  • Erik Vargo
  • Raghu Pasupathy
  • Lawrence M. Leemis
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 247)

Abstract

We present two moment-ratio diagrams along with guidance for their interpretation. The first moment-ratio diagram is a graph of skewness vs. kurtosis for common univariate probability distributions. The second moment-ratio diagram is a graph of coefficient of variation vs. skewness for common univariate probability distributions. Both of these diagrams, to our knowledge, are the most comprehensive to date. The diagrams serve four purposes: (1) they quantify the proximity between various univariate distributions based on their second, third, and fourth moments, (2) they illustrate the versatility of a particular distribution based on the range of values that the various moments can assume, (3) they can be used to create a short list of potential probability models based on a data set, and (4) they clarify the limiting relationships between various well-known distribution families. The use of the moment-ratio diagrams for choosing a distribution that models given data is illustrated.

Keywords

Coefficient of variation Kurtosis Skewness 

References

  1. 13.
    Billingsley, P. (1995). Probability and measure. New York: Wiley.Google Scholar
  2. 16.
    Block, A. D., & Leemis, L. M. (2008). Model discrimination for heavily censored survival data. IEEE Transactions on Reliability, 57, 248–259.CrossRefGoogle Scholar
  3. 27.
    Caroni, C. (2002). The correct ‘ball bearings’ data. Lifetime Data Analysis, 8, 395–399.CrossRefGoogle Scholar
  4. 31.
    Cheng, R. C. H. (2006). Resampling methods. In S. Henderson, & B. L. Nelson (Eds.), Handbooks in operations research and management science: Simulation (pp. 415–453). Amsterdam: Elsevier.Google Scholar
  5. 35.
    Cox, D. R., & Oakes, D. (1984). Analysis of survival data. London: Chapman & Hall/CRC.Google Scholar
  6. 36.
    Craig, C. C. (1936). A new exposition and chart for the pearson system of frequency curves. Annals of Mathematical Statistics, 7, 16–28.CrossRefGoogle Scholar
  7. 38.
    Crowder, M. J., Kimber, A. C., Smith, R. L., & Sweeting, T. J. (1991). Statistical analysis of reliability data. London: Chapman & Hall/CRC.CrossRefGoogle Scholar
  8. 44.
    Dembo, A., & Zeitouni, O. (1998). Large deviations techniques and applications. Heidelberg: Springer.CrossRefGoogle Scholar
  9. 71.
    Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Continuous univariate distributions (Vol. 1). New York: Wiley.Google Scholar
  10. 72.
    Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate distributions (2nd ed., Vol. 2). New York: Wiley.Google Scholar
  11. 82.
    Kotz, S., & Johnson, N. L. (2006). Encyclopedia of statistical sciences (Vol. 5). New York: Wiley.Google Scholar
  12. 95.
    Leemis, L., & McQueston, J. (2008). Univariate distribution relationships. The American Statistician, 62(1), 45–53.CrossRefGoogle Scholar
  13. 101.
    Lieblein, J., & Zelen, M. (1956). Statistical investigation of the fatigue life of deep-groove ball bearings. Journal of Research of the National Bureau of Standards, 57, 273–316.CrossRefGoogle Scholar
  14. 113.
    Meeker, W., & Escobar, L. (1998). Statistical methods for reliability data. New York: Wiley.Google Scholar
  15. 138.
    Rodriguez, R. N. (1977). A guide to the Burr type XII distributions. Biometrika, 64, 129–134.CrossRefGoogle Scholar
  16. 141.
    Ross, S. M. (2006). Simulation. New York: Elsevier Academic.Google Scholar
  17. 156.
    Stuart, A., & Ord, K. (1994). Kendall’s advanced theory of statistics (Vol. 1). London: Hodder Arnold.Google Scholar
  18. 158.
    Tadikamalla, P. R. (1980). A look at the Burr and related distributions. International Statistical Review, 48, 337–344.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Erik Vargo
    • 1
  • Raghu Pasupathy
    • 2
  • Lawrence M. Leemis
    • 3
  1. 1.MITREMcLeanUSA
  2. 2.Purdue UniversityWest LafayetteUSA
  3. 3.The College of William and MaryWilliamsburgUSA

Personalised recommendations