Skip to main content

Application of Proteomic Biomarkers in Livestock Disease Management

  • Chapter
  • First Online:
Agricultural Proteomics Volume 2

Abstract

The applications of proteomics in animal husbanding are broad and include monitoring proteome changes in the tissue and body fluids to interpret the physiological process during growth, development and production and in the detection and management of disease. The diversity of farm animal species from cattle, sheep, goats, chickens to fish and even invertebrate aquaculture species complicate the analysis and interpretation of proteome data. The recent technological advances in extraction and fractionation techniques along with platform sensitivity and data analysis have allowed discovery of next-generation biomarkers with high sensitivity, specificity and precision. These robust biomarkers are useful in monitoring health and well-being of animals, surveillance against animal pathogens, elucidating disease mechanisms, assessing pharmacologic response to therapeutic and directing genetic selection and breeding. A literature survey revealed that discovery of proteomic biomarkers in biological fluids (serum, plasma, urine, milk, exudates, tear, semen and genital secretion) provide readily accessible sources of samples for non- or minimally-invasive and cost-effective diagnosis tools. This area of research is actively expanding and future research would profitably focus on applications of multiple biomarkers to increase the diagnosis precision in livestock disease management. Therefore this review is aimed to provide a brief overview on successful experiences in using proteomics biomarkers identified in biological fluids for livestock diseases management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bendixen E, Danielsen M, Hollung K, Gianazza E, Miller I (2011) Farm animal proteomics—a review. J Proteomics 74:282–293

    Article  CAS  PubMed  Google Scholar 

  2. Eckersall PD, De Almeida AM, Miller I (2012) Proteomics, a new tool for farm animal science. J Proteomics 75:4187–4189

    Article  CAS  PubMed  Google Scholar 

  3. Roncada P, Piras C, Soggiu A, Turk R, Urbani A, Bonizzi L (2012) Farm animal milk proteomics. J Proteomics 75:4259–4274

    Article  CAS  PubMed  Google Scholar 

  4. Bassols A, Turk R, Roncada P (2014) A proteomics perspective: from animal welfare to food safety. Curr Protein Pept Sci 15:156–168

    Article  CAS  PubMed  Google Scholar 

  5. Gutierrez AM, Ceron JJ, Fuentes-Rubio M, Tecles F, Beeley JA (2014) A proteomic approach to porcine saliva. Curr Protein Pept Sci 15:56–63

    Article  CAS  PubMed  Google Scholar 

  6. Almeida AM, Bassols A, Bendixen E, Bhide M, Ceciliani F, Cristobal S et al (2015) Animal board invited review: advances in proteomics for animal and food sciences. Animal 9:1–17

    Article  CAS  PubMed  Google Scholar 

  7. Ceciliani F, Ceron JJ, Eckersall PD, Sauerwein H (2012) Acute phase proteins in ruminants. J Proteomics 75:4207–4231

    Article  CAS  PubMed  Google Scholar 

  8. Lamy E, Mau M (2012) Saliva proteomics as an emerging, non-invasive tool to study livestock physiology, nutrition and diseases. J Proteomics 75:4251–4258

    Article  CAS  PubMed  Google Scholar 

  9. Shakeri M, Zulkifli I, Soleimani AF, O’reilly EL, Eckersall PD, Anna AA et al (2014) Response to dietary supplementation of L-glutamine and L-glutamate in broiler chickens reared at different stocking densities under hot, humid tropical conditions. Poult Sci 93:2700–2708

    Article  CAS  PubMed  Google Scholar 

  10. Bathla S, Rawat P, Baithalu R, La Yadav M, Naru J, Tiwari A et al (2015) Profiling of urinary proteins in Karan Fries cows reveals more than 1550 proteins. J Proteomics 127:193–201

    Article  CAS  PubMed  Google Scholar 

  11. Choi JW, Kim GJ, Lee S, Kim J, Demello AJ, Chang SI (2015) A droplet-based fluorescence polarization immunoassay (dFPIA) platform for rapid and quantitative analysis of biomarkers. Biosens Bioelectron 67:497–502

    Article  CAS  PubMed  Google Scholar 

  12. Ceciliani F, Eckersall D, Burchmore R, Lecchi C (2014) Proteomics in veterinary medicine: applications and trends in disease pathogenesis and diagnostics. Vet Pathol 51:351–362

    Article  CAS  PubMed  Google Scholar 

  13. Di Girolamo F, D’amato A, Lante I, Signore F, Muraca M, Putignani L (2014) Farm animal serum proteomics and impact on human health. Int J Mol Sci 15:15396–15411

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rodrigues PM, Silva TS, Dias J, Jessen F (2012) PROTEOMICS in aquaculture: applications and trends. J Proteomics 75:4325–4345

    Article  CAS  PubMed  Google Scholar 

  15. Abd El-Salam MH (2014) Application of proteomics to the areas of milk production, processing and quality control-a review. Int J Dairy Technol 67:153–166

    Article  CAS  Google Scholar 

  16. O’reilly EL, Eckersall PD (2014) Acute phase proteins: a review of their function, behaviour and measurement in chickens. Worlds Poult Sci J 70:27–43

    Article  Google Scholar 

  17. Codina M, Estanyol JM, Fidalgo MJ, Ballesca JL, Oliva R (2015) Advances in sperm proteomics: best-practise methodology and clinical potential. Expert Rev Proteomics 12:255–277

    Article  CAS  PubMed  Google Scholar 

  18. Downing G (2001) Biomarkers definitions working group. Biomarkers and surrogate endpoints. Clin Pharmacol Ther 69:89–95

    Article  Google Scholar 

  19. Boehmer JL, Olumee-Shabon Z (2011) Veterinary biomarker discovery: proteomic analysis of acute phase proteins. INTECH Open Access Publisher, Rijeka

    Google Scholar 

  20. Marco-Ramell A, De Almeida A, Cristobal S et al (2016) Proteomics and the search for welfare and stress biomarkers in animal production in the one-health context. Mol Biosyst 12:2024–2035

    Google Scholar 

  21. Anderson NL, Polanski M, Pieper R, Gatlin T, Tirumalai RS, Conrads TP et al (2004) The human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol Cell Proteomics 3:311–326

    Article  CAS  PubMed  Google Scholar 

  22. Eckersall PD, Mclaughlin M (2011) Proteomics in Animal Health and Disease. In: Eckersall PD, Whitfield PD (eds) Methods in animal proteomics. Wiley, Chichester, pp 243–318

    Chapter  Google Scholar 

  23. Marco-Ramell A, Bassols A (2010) Enrichment of low-abundance proteins from bovine and porcine serum samples for proteomic studies. Res Vet Sci 89:340–343

    Article  CAS  PubMed  Google Scholar 

  24. Min L, Zheng N, Zhao S, Cheng J, Yang Y, Zhang Y et al (2016) Long-term heat stress induces the inflammatory response in dairy cows revealed by plasma proteome analysis. Biochem Biophys Res Commun 471:296–302

    Article  CAS  PubMed  Google Scholar 

  25. Rialland P, Otis C, De Courval ML, Mulon PY, Harvey D, Bichot S et al (2014) Assessing experimental visceral pain in dairy cattle: a pilot, prospective, blinded, randomized, and controlled study focusing on spinal pain proteomics. J Dairy Sci 97:2118–2134

    Article  CAS  PubMed  Google Scholar 

  26. Hughes V, Garcia-Sanchez A, Smith S, Mclean K, Lainson A, Nath M et al (2012) Proteome-determined type-specific proteins of Mycobacterium avium subspecies paratuberculosis. Vet Microbiol 158:153–162

    Article  CAS  PubMed  Google Scholar 

  27. Hughes V, Denham S, Bannantine JP, Chianini F, Kerr K, May L et al (2013) Interferon gamma responses to proteome-determined specific recombinant proteins: potential as diagnostic markers for ovine Johne’s disease. Vet Immunol Immunopathol 155:197–204

    Article  CAS  PubMed  Google Scholar 

  28. Le Marechal C, Jan G, Even S, Mcculloch JA, Azevedo V, Thiery R et al (2009) Development of serological proteome analysis of mastitis by Staphylococcus aureus in ewes. J Microbiol Methods 79:131–136

    Article  PubMed  Google Scholar 

  29. Hughes V, Bannantine JP, Denham S, Smith S, Garcia-Sanchez A, Sales J et al (2008) Immunogenicity of proteome-determined Mycobacterium avium subsp. paratuberculosis-specific proteins in sheep with paratuberculosis. Clin Vaccine Immunol 15:1824–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Katsafadou AI, Tsangaris GT, Billinis C, Fthenakis GC (2015) Use of proteomics in the study of microbial diseases of small ruminants. Vet Microbiol 181:27–33

    Article  CAS  PubMed  Google Scholar 

  31. De La Fuente J, Contreras M (2015) Tick vaccines: current status and future directions. Expert Rev Vaccines 14:1367–1376

    Article  PubMed  Google Scholar 

  32. Marcelino I, De Almeida AM, Ventosa M, Pruneau L, Meyer DF, Martinez D et al (2012) Tick-borne diseases in cattle: applications of proteomics to develop new generation vaccines. J Proteomics 75:4232–4250

    Article  CAS  PubMed  Google Scholar 

  33. Moyes KM, Bendixen E, Codrea MC, Ingvartsen KL (2013) Identification of hepatic biomarkers for physiological imbalance of dairy cows in early and mid lactation using proteomic technology. J Dairy Sci 96:3599–3610

    Article  CAS  PubMed  Google Scholar 

  34. Reinhardt TA, Lippolis JD, Nonnecke BJ, Sacco RE (2012) Bovine milk exosome proteome. J Proteomics 75:1486–1492

    Article  CAS  PubMed  Google Scholar 

  35. Hogarth CJ, Fitzpatrick JL, Nolan AM, Young FJ, Pitt A, Eckersall PD (2004) Differential protein composition of bovine whey: a comparison of whey from healthy animals and from those with clinical mastitis. Proteomics 4:2094–2100

    Article  CAS  PubMed  Google Scholar 

  36. Danielsen M, Codrea MC, Ingvartsen KL, Friggens NC, Bendixen E, Røntved CM (2010) Quantitative milk proteomics–host responses to lipopolysaccharide-mediated inflammation of bovine mammary gland. Proteomics 10:2240–2249

    Article  CAS  PubMed  Google Scholar 

  37. Smolenski G, Haines S, Kwan FYS, Bond J, Farr V, Davis SR et al (2007) Characterisation of host defence proteins in milk using a proteomic approach. J Proteome Res 6:207–215

    Article  CAS  PubMed  Google Scholar 

  38. Boehmer JL, Bannerman DD, Shefcheck K, Ward JL (2008) Proteomic analysis of differentially expressed proteins in bovine milk during experimentally induced Escherichia coli mastitis. J Dairy Sci 91:4206–4218

    Article  CAS  PubMed  Google Scholar 

  39. Baeker R, Haebel S, Schlatterer K, Schlatterer B (2002) Lipocalin-type prostaglandin D synthase in milk: a new biomarker for bovine mastitis. Prostaglandins Other Lipid Mediat 67:75–88

    Article  CAS  PubMed  Google Scholar 

  40. Bislev SL, Kusebauch U, Codrea MC, Beynon RJ, Harman VM, Rontved CM et al (2012) Quantotypic properties of QconCAT peptides targeting bovine host response to Streptococcus uberis. J Proteome Res 11:1832–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mansor R, Mullen W, Albalat A, Zerefos P, Mischak H, Barrett DC et al (2013) A peptidomic approach to biomarker discovery for bovine mastitis. J Proteomics 85:89–98

    Article  CAS  PubMed  Google Scholar 

  42. Chiaradia E, Valiani A, Tartaglia M, Scoppetta F, Renzone G, Arena S et al (2013) Ovine subclinical mastitis: proteomic analysis of whey and milk fat globules unveils putative diagnostic biomarkers in milk. J Proteomics 83:144–159

    Article  CAS  PubMed  Google Scholar 

  43. Pisitkun T, Johnstone R, Knepper MA (2006) Discovery of urinary biomarkers. Mol Cell Proteomics 5:1760–1771

    Article  CAS  PubMed  Google Scholar 

  44. Il’yasova D, Scarbrough P, Spasojevic I (2012) Urinary biomarkers of oxidative status. Clin Chim Acta 413:1446–1453

    Article  PubMed  PubMed Central  Google Scholar 

  45. Heilmann RM, Wright ZM, Lanerie DJ, Suchodolski JS, Steiner JM (2014) Measurement of urinary canine S100A8/A9 and S100A12 concentrations as candidate biomarkers of lower urinary tract neoplasia in dogs. J Vet Diagn Invest 26:104–112

    Article  CAS  PubMed  Google Scholar 

  46. Simon SL, Lamoureux L, Plews M, Stobart M, Lemaistre J, Ziegler U et al (2008) The identification of disease-induced biomarkers in the urine of BSE infected cattle. Proteome Sci 6:23

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liu Z, Yuan Z, Zhao Q (2014) SELDI-TOF-MS proteomic profiling of serum, urine, and amniotic fluid in neural tube defects. PLoS ONE 9:e103276

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shaked GM, Shaked Y, Kariv-Inbal Z, Halimi M, Avraham I, Gabizon R (2001) A protease-resistant prion protein isoform is present in urine of animals and humans affected with prion diseases. J Biol Chem 276:31479–31482

    Article  CAS  PubMed  Google Scholar 

  49. Ma D, Li L (2012) Searching for reliable premortem protein biomarkers for prion diseases: progress and challenges to date. Expert Rev Proteomics 9:267–280

    Article  CAS  PubMed  Google Scholar 

  50. Zheng J, Liu L, Wang J, Jin Q (2013) Urinary proteomic and non-prefractionation quantitative phosphoproteomic analysis during pregnancy and non-pregnancy. BMC Genom 14:777

    Article  CAS  Google Scholar 

  51. Shao C, Li M, Li X, Wei L, Zhu L, Yang F et al (2011) A tool for biomarker discovery in the urinary proteome: a manually curated human and animal urine protein biomarker database. Mol Cell Proteomics 10(M111):010975

    PubMed  Google Scholar 

  52. Muneta Y, Yoshikawa T, Minagawa Y, Shibahara T, Maeda R, Omata Y (2010) Salivary IgA as a useful non-invasive marker for restraint stress in pigs. J Vet Med Sci 72:1295–1300

    Article  PubMed  Google Scholar 

  53. Lamy E, Da Costa G, Santos R, Capela ESF, Potes J, Pereira A et al (2009) Sheep and goat saliva proteome analysis: A useful tool for ingestive behavior research? Physiol Behav 98:393–401

    Article  CAS  PubMed  Google Scholar 

  54. De Sousa-Pereira P, Cova M, Abrantes J, Ferreira R, Trindade F, Barros A et al (2015) Cross-species comparison of mammalian saliva using an LC-MALDI based proteomic approach. Proteomics 15:1598–1607

    Article  PubMed  Google Scholar 

  55. Gutierrez AM, Miller I, Hummel K, Nobauer K, Martinez-Subiela S, Razzazi-Fazeli E et al (2011) Proteomic analysis of porcine saliva. Vet J 187:356–362

    Article  CAS  PubMed  Google Scholar 

  56. Ang CS, Binos S, Knight MI, Moate PJ, Cocks BG, Mcdonagh MB (2011) Global survey of the bovine salivary proteome: integrating multidimensional prefractionation, targeted, and glycocapture strategies. J Proteome Res 10:5059–5069

    Article  CAS  PubMed  Google Scholar 

  57. Muthukumar S, Rajkumar R, Rajesh D, Saibaba G, Liao CC, Archunan G et al (2014) Exploration of salivary proteins in buffalo: an approach to find marker proteins for estrus. FASEB J 28:4700–4709

    Article  CAS  PubMed  Google Scholar 

  58. Rahman M, Müller U, Sauerwein H et al (2013) Investigation of salivary acute phase proteins in calves. In: Almeida A, Eckersall D, Bencurova E et al (eds) Farm animal proteomics 2013. Wageningen Academic Publishers, Wageningen, Netherlands, pp 213–216

    Google Scholar 

  59. Gomez-Laguna J, Gutierrez A, Pallares FJ, Salguero FJ, Ceron JJ, Carrasco L (2010) Haptoglobin and C-reactive protein as biomarkers in the serum, saliva and meat juice of pigs experimentally infected with porcine reproductive and respiratory syndrome virus. Vet J 185:83–87

    Article  CAS  PubMed  Google Scholar 

  60. Fuentes-Rubio M, Ceron JJ, De Torre C, Escribano D, Gutierrez AM, Tecles F (2014) Porcine salivary analysis by 2-dimensional gel electrophoresis in 3 models of acute stress: a pilot study. Can J Vet Res 78:127–132

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Weldearegay YB, Pich A, Schieck E, Liljander A, Gicheru N, Wesonga H et al (2016) Proteomic characterization of pleural effusion, a specific host niche of Mycoplasma mycoides subsp. mycoides from cattle with contagious bovine pleuropneumonia (CBPP). J Proteomics 131:93–103

    Article  CAS  PubMed  Google Scholar 

  62. Nanduri B, Lawrence ML, Vanguri S, Burgess SC (2005) Proteomic analysis using an unfinished bacterial genome: the effects of subminimum inhibitory concentrations of antibiotics on Mannheimia haemolytica virulence factor expression. Proteomics 5:4852–4863

    Article  CAS  PubMed  Google Scholar 

  63. Souza CE, Rego JP, Lobo CH, Oliveira JT, Nogueira FC, Domont GB et al (2012) Proteomic analysis of the reproductive tract fluids from tropically-adapted Santa Ines rams. J Proteomics 75:4436–4456

    Article  CAS  PubMed  Google Scholar 

  64. Boe-Hansen GB, Rego JP, Crisp JM, Moura AA, Nouwens AS, Li Y et al (2015) Seminal plasma proteins and their relationship with percentage of morphologically normal sperm in 2-year-old Brahman (Bos indicus) bulls. Anim Reprod Sci 162:20–30

    Article  CAS  PubMed  Google Scholar 

  65. Gaviraghi A, Deriu F, Soggiu A, Galli A, Bonacina C, Bonizzi L et al (2010) Proteomics to investigate fertility in bulls. Vet Res Commun 34(Suppl 1):S33–36

    Article  PubMed  Google Scholar 

  66. Holland A, Ohlendieck K (2015) Comparative profiling of the sperm proteome. Proteomics 15:632–648

    Article  CAS  PubMed  Google Scholar 

  67. Rodgaard T, Heegaard PM, Callesen H (2015) Non-invasive assessment of in-vitro embryo quality to improve transfer success. Reprod Biomed Online 31:585–592

    Article  PubMed  Google Scholar 

  68. Deutsch DR, Frohlich T, Otte KA, Beck A, Habermann FA, Wolf E et al (2014) Stage-specific proteome signatures in early bovine embryo development. J Proteome Res 13:4363–4376

    Article  CAS  PubMed  Google Scholar 

  69. De Freitas Campos C, Cole N, Van Dyk D, Walsh BJ, Diakos P, Almeida D et al (2008) Proteomic analysis of dog tears for potential cancer markers. Res Vet Sci 85:349–352

    Article  Google Scholar 

  70. Shamsi FA, Chen Z, Liang J, Li K, Al-Rajhi AA, Chaudhry IA et al (2011) Analysis and comparison of proteomic profiles of tear fluid from human, cow, sheep, and camel eyes. Invest Ophthalmol Vis Sci 52:9156–9165

    Article  PubMed  Google Scholar 

  71. Zhou L, Beuerman RW, Huang L, Barathi A, Foo YH, Li SF et al (2007) Proteomic analysis of rabbit tear fluid: defensin levels after an experimental corneal wound are correlated to wound closure. Proteomics 7:3194–3206

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Oskoueian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oskoueian, E., Eckersall, P.D., Bencurova, E., Dandekar, T. (2016). Application of Proteomic Biomarkers in Livestock Disease Management. In: Salekdeh, G. (eds) Agricultural Proteomics Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-43278-6_14

Download citation

Publish with us

Policies and ethics