Advertisement

The Microbiome in Neurogastroenterology

  • Geoffrey A. Preidis
  • Bruno P. Chumpitazi
  • Robert J. ShulmanEmail author
Chapter

Abstract

Gut microbes are essential to the normal development and function of the enteric nervous system and gastrointestinal tract. The simple microbiome of infancy gradually matures into a rich and diverse adult intestinal microbial ecosystem that supports the development of normal sensorimotor function. Microbial factors that modulate intestinal motility include secreted and intrinsic cell wall toxins, neurotransmitter and hormone analogs, short-chain fatty acids, and deconjugated bile acids. On the other hand, microbiome composition and function is affected by host factors including gastrointestinal transit time, physiologic stress, and diet. Gut microbes also activate neuronal pathways that transmit signals to the central nervous system that influence pain perception, stress response, and behavior. Adults and children with irritable bowel syndrome and other functional gastrointestinal disorders have altered gut microbial community composition, although it is not yet known whether these changes result from or contribute to pathology. Therapeutic trials of probiotics, prebiotics, antibiotics, or restriction of fermentable carbohydrates show promise to treat functional gastrointestinal disorders, although not enough evidence exists to recommend specific species, strains, or therapies for individual patients or disorders. As our knowledge regarding mechanisms of communication along the brain-gut-microbiome axis increases, the prospect of treating functional disorders of the gastrointestinal tract by strategically manipulating the microbiome moves closer to reality.

Keywords

Functional gastrointestinal disorders Intestinal motility Irritable bowel syndrome Metabolomics Metagenomics Next-generation sequencing Prebiotics Probiotics Small bowel bacterial overgrowth Microbiome in neurogastroenterology Neurogastroenterology and the microbiome Gastrointestinal microbiome Microbiota Brain-gut axis 

References

  1. 1.
    Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr. 2002;22:283–307. doi: 10.1146/annurev.nutr.22.011602.092259.PubMedCrossRefGoogle Scholar
  2. 2.
    Backhed F, Fraser CM, Ringel Y, Sanders ME, Sartor RB, Sherman PM, Versalovic J, Young V, Finlay BB. Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe. 2012;12(5):611–22. doi: 10.1016/j.chom.2012.10.012.PubMedCrossRefGoogle Scholar
  3. 3.
    Hansen CH, Nielsen DS, Kverka M, Zakostelska Z, Klimesova K, Hudcovic T, Tlaskalova-Hogenova H, Hansen AK. Patterns of early gut colonization shape future immune responses of the host. PLoS One. 2012;7(3), e34043. doi: 10.1371/journal.pone.0034043.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Food and Agricultural Organization of the United Nations (FAO)/World Health Organization (WHO). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. Basel, Switzerland; 2001.Google Scholar
  5. 5.
    Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995;125(6):1401–12.PubMedGoogle Scholar
  6. 6.
    Montalban-Arques A, De Schryver P, Bossier P, Gorkiewicz G, Mulero V, Gatlin 3rd DM, Galindo-Villegas J. Selective manipulation of the gut microbiota improves immune status in vertebrates. Front Immunol. 2015;6:512. doi: 10.3389/fimmu.2015.00512.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci. 2015;9:392. doi: 10.3389/fncel.2015.00392.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Wostmann B, Bruckner-Kardoss E. Development of cecal distention in germ-free baby rats. Am J Physiol. 1959;197:1345–6.PubMedGoogle Scholar
  9. 9.
    Skelly BJ, Trexler PC, Tanami J. Effect of a Clostridium species upon cecal size of gnotobiotic mice. Proc Soc Exp Biol Med. 1962;100:455–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Savage DC, Dubos R. Alterations in the mouse cecum and its flora produced by antibacterial drugs. J Exp Med. 1968;128(1):97–110.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Dupont JR, Jervis HR, Sprinz H. Auerbach’s plexus of the rat cecum in relation to the germfree state. J Comp Neurol. 1965;125(1):11–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Strandberg K, Sedvall G, Midtvedt T, Gustafsson B. Effect of some biologically active amines on the cecum wall of germfree rats. Proc Soc Exp Biol Med. 1966;121(3):699–702.PubMedCrossRefGoogle Scholar
  13. 13.
    Abrams GD, Bishop JE. Effect of the normal microbial flora on the resistance of the small intestine to infection. J Bacteriol. 1966;92(6):1604–8.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Abrams GD, Bishop JE. Effect of the normal microbial flora on gastrointestinal motility. Proc Soc Exp Biol Med. 1967;126(1):301–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Mathias JR, Carlson GM, DiMarino AJ, Bertiger G, Morton HE, Cohen S. Intestinal myoelectric activity in response to live Vibrio cholerae and cholera enterotoxin. J Clin Invest. 1976;58(1):91–6. doi: 10.1172/JCI108464.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Vantrappen G, Janssens J, Hellemans J, Ghoos Y. The interdigestive motor complex of normal subjects and patients with bacterial overgrowth of the small intestine. J Clin Invest. 1977;59(6):1158–66. doi: 10.1172/JCI108740.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Scott LD, Cahall DL. Influence of the interdigestive myoelectric complex on enteric flora in the rat. Gastroenterology. 1982;82(4):737–45.PubMedGoogle Scholar
  18. 18.
    Justus PG, Fernandez A, Martin JL, King CE, Toskes PP, Mathias JR. Altered myoelectric activity in the experimental blind loop syndrome. J Clin Invest. 1983;72(3):1064–71. doi: 10.1172/JCI111031.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Justus PG, McHerron LE, Ward TT. Altered motility and duration of bacterial overgrowth in experimental blind loop syndrome. Dig Dis Sci. 1984;29(7):643–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Caenepeel P, Janssens J, Vantrappen G, Eyssen H, Coremans G. Interdigestive myoelectric complex in germ-free rats. Dig Dis Sci. 1989;34(8):1180–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Husebye E, Hellstrom PM, Midtvedt T. Intestinal microflora stimulates myoelectric activity of rat small intestine by promoting cyclic initiation and aboral propagation of migrating myoelectric complex. Dig Dis Sci. 1994;39(5):946–56.PubMedCrossRefGoogle Scholar
  22. 22.
    Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science. 2001;291(5505):881–4. doi: 10.1126/science.291.5505.881.PubMedCrossRefGoogle Scholar
  23. 23.
    Husebye E, Hellstrom PM, Sundler F, Chen J, Midtvedt T. Influence of microbial species on small intestinal myoelectric activity and transit in germ-free rats. Am J Physiol Gastrointest Liver Physiol. 2001;280(3):G368–80.PubMedGoogle Scholar
  24. 24.
    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164):804–10.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Pennisi E. Metagenomics. Massive microbial sequence project proposed. Science. 2007;315(5820):1781.PubMedCrossRefGoogle Scholar
  26. 26.
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Meta HITC, Bork P, Ehrlich SD, Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. doi: 10.1038/nature08821.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Fierer N, Nemergut D, Knight R, Craine JM. Changes through time: integrating microorganisms into the study of succession. Res Microbiol. 2010;161(8):635–42. doi: 10.1016/j.resmic.2010.06.002.PubMedCrossRefGoogle Scholar
  28. 28.
    Gosalbes MJ, Llop S, Valles Y, Moya A, Ballester F, Francino MP. Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin Exp Allergy. 2013;43(2):198–211. doi: 10.1111/cea.12063.PubMedCrossRefGoogle Scholar
  29. 29.
    Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6(237):237ra65. doi: 10.1126/scitranslmed.3008599.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Newburg DS, Morelli L. Human milk and infant intestinal mucosal glycans guide succession of the neonatal intestinal microbiota. Pediatr Res. 2015;77(1–2):115–20. doi: 10.1038/pr.2014.178.PubMedCrossRefGoogle Scholar
  31. 31.
    Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–5. doi: 10.1073/pnas.1002601107.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5(7), e177. doi: 10.1371/journal.pbio.0050177.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14. doi: 10.1038/nature11234.CrossRefGoogle Scholar
  34. 34.
    De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–6. doi: 10.1073/pnas.1005963107.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–7.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O’Sullivan O, Fitzgerald GF, Deane J, O’Connor M, Harnedy N, O’Connor K, O’Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O’Toole PW. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410):178–84. doi: 10.1038/nature11319.PubMedGoogle Scholar
  37. 37.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4. doi: 10.1038/nature07540.PubMedCrossRefGoogle Scholar
  38. 38.
    Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008;6(11), e280. doi: 10.1371/journal.pbio.0060280.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4578–85. doi: 10.1073/pnas.1000081107.PubMedCrossRefGoogle Scholar
  40. 40.
    Ringel-Kulka T, Cheng J, Ringel Y, Salojarvi J, Carroll I, Palva A, de Vos WM, Satokari R. Intestinal microbiota in healthy U.S. young children and adults—a high throughput microarray analysis. PLoS One. 2013;8(5), e64315. doi: 10.1371/journal.pone.0064315.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Hollister EB, Riehle K, Luna RA, Weidler EM, Rubio-Gonzales M, Mistretta TA, Raza S, Doddapaneni HV, Metcalf GA, Muzny DM, Gibbs RA, Petrosino JF, Shulman RJ, Versalovic J. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome. 2015;3:36. doi: 10.1186/s40168-015-0101-x.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Agans R, Rigsbee L, Kenche H, Michail S, Khamis HJ, Paliy O. Distal gut microbiota of adolescent children is different from that of adults. FEMS Microbiol Ecol. 2011;77(2):404–12. doi: 10.1111/j.1574-6941.2011.01120.x.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124(4):837–48. doi: 10.1016/j.cell.2006.02.017.PubMedCrossRefGoogle Scholar
  44. 44.
    Pei Z, Bini EJ, Yang L, Zhou M, Francois F, Blaser MJ. Bacterial biota in the human distal esophagus. Proc Natl Acad Sci U S A. 2004;101(12):4250–5. doi: 10.1073/pnas.0306398101.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Andersson AF, Lindberg M, Jakobsson H, Backhed F, Nyren P, Engstrand L. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One. 2008;3(7), e2836. doi: 10.1371/journal.pone.0002836.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower C. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13(9):R79. doi: 10.1186/gb-2012-13-9-r79.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Harrell L, Wang Y, Antonopoulos D, Young V, Lichtenstein L, Huang Y, Hanauer S, Chang E. Standard colonic lavage alters the natural state of mucosal-associated microbiota in the human colon. PLoS One. 2012;7(2), e32545. doi: 10.1371/journal.pone.0032545.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Uribe A, Alam M, Johansson O, Midtvedt T, Theodorsson E. Microflora modulates endocrine cells in the gastrointestinal mucosa of the rat. Gastroenterology. 1994;107(5):1259–69.PubMedCrossRefGoogle Scholar
  49. 49.
    Collins J, Borojevic R, Verdu EF, Huizinga JD, Ratcliffe EM. Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterol Motil. 2014;26(1):98–107. doi: 10.1111/nmo.12236.PubMedCrossRefGoogle Scholar
  50. 50.
    Di Giancamillo A, Vitari F, Savoini G, Bontempo V, Bersani C, Dell’Orto V, Domeneghini C. Effects of orally administered probiotic Pediococcus acidilactici on the small and large intestine of weaning piglets. A qualitative and quantitative micro-anatomical study. Histol Histopathol. 2008;23(6):651–64.PubMedGoogle Scholar
  51. 51.
    di Giancamillo A, Vitari F, Bosi G, Savoini G, Domeneghini C. The chemical code of porcine enteric neurons and the number of enteric glial cells are altered by dietary probiotics. Neurogastroenterol Motil. 2010;22(9):e271–8. doi: 10.1111/j.1365-2982.2010.01529.x.PubMedCrossRefGoogle Scholar
  52. 52.
    Burns TW, Mathias JR, Carlson GM, Martin JL, Shields RP. Effect of toxigenic Escherichia coli on myoelectric activity of small intestine. Am J Physiol. 1978;235(3):E311–5.PubMedGoogle Scholar
  53. 53.
    Justus PG, Martin JL, Goldberg DA, Taylor NS, Bartlett JG, Alexander RW, Mathias JR. Myoelectric effects of Clostridium difficile: motility-altering factors distinct from its cytotoxin and enterotoxin in rabbits. Gastroenterology. 1982;83(4):836–43.PubMedGoogle Scholar
  54. 54.
    Lima CC, Carvalho-de-Souza JL, Lima AA, Leal-Cardoso JH. Ileal smooth muscle motility depression on rabbit induced by toxin A from Clostridium difficile. Dig Dis Sci. 2008;53(6):1636–43. doi: 10.1007/s10620-007-0030-z.PubMedCrossRefGoogle Scholar
  55. 55.
    Castagliuolo I, LaMont JT, Letourneau R, Kelly C, O’Keane JC, Jaffer A, Theoharides TC, Pothoulakis C. Neuronal involvement in the intestinal effects of Clostridium difficile toxin A and Vibrio cholerae enterotoxin in rat ileum. Gastroenterology. 1994;107(3):657–65.PubMedCrossRefGoogle Scholar
  56. 56.
    Fung C, Ellis M, Bornstein JC. Luminal cholera toxin alters motility in isolated guinea-pig jejunum via a pathway independent of 5-HT(3) receptors. Front Neurosci. 2010;4:162. doi: 10.3389/fnins.2010.00162.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Wirthlin DJ, Cullen JJ, Spates ST, Conklin JL, Murray J, Caropreso DK, Ephgrave KS. Gastrointestinal transit during endotoxemia: the role of nitric oxide. J Surg Res. 1996;60(2):307–11. doi: 10.1006/jsre.1996.0048.PubMedCrossRefGoogle Scholar
  58. 58.
    Anitha M, Vijay-Kumar M, Sitaraman SV, Gewirtz AT, Srinivasan S. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology. 2012;143(4):1006–16.e4. doi: 10.1053/j.gastro.2012.06.034.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Rumio C, Besusso D, Arnaboldi F, Palazzo M, Selleri S, Gariboldi S, Akira S, Uematsu S, Bignami P, Ceriani V, Menard S, Balsari A. Activation of smooth muscle and myenteric plexus cells of jejunum via Toll-like receptor 4. J Cell Physiol. 2006;208(1):47–54. doi: 10.1002/jcp.20632.PubMedCrossRefGoogle Scholar
  60. 60.
    Muller PA, Koscso B, Rajani GM, Stevanovic K, Berres ML, Hashimoto D, Mortha A, Leboeuf M, Li XM, Mucida D, Stanley ER, Dahan S, Margolis KG, Gershon MD, Merad M, Bogunovic M. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell. 2014;158(2):300–13. doi: 10.1016/j.cell.2014.04.050.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Roth J, LeRoith D, Shiloach J, Rosenzweig JL, Lesniak MA, Havrankova J. The evolutionary origins of hormones, neurotransmitters, and other extracellular chemical messengers: implications for mammalian biology. N Engl J Med. 1982;306(9):523–7. doi: 10.1056/NEJM198203043060907.PubMedCrossRefGoogle Scholar
  62. 62.
    LeRoith D, Pickens W, Vinik AI, Shiloach J. Bacillus subtilis contains multiple forms of somatostatin-like material. Biochem Biophys Res Commun. 1985;127(3):713–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Minuk GY. Gamma-aminobutyric acid (GABA) production by eight common bacterial pathogens. Scand J Infect Dis. 1986;18(5):465–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Martin FP, Wang Y, Sprenger N, Yap IK, Lundstedt T, Lek P, Rezzi S, Ramadan Z, van Bladeren P, Fay LB, Kochhar S, Lindon JC, Holmes E, Nicholson JK. Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model. Mol Syst Biol. 2008;4:157.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Takaki M, Mawe GM, Barasch JM, Gershon MD, Gershon MD. Physiological responses of guinea-pig myenteric neurons secondary to the release of endogenous serotonin by tryptamine. Neuroscience. 1985;16(1):223–40.PubMedCrossRefGoogle Scholar
  66. 66.
    Williams BB, Van Benschoten AH, Cimermancic P, Donia MS, Zimmermann M, Taketani M, Ishihara A, Kashyap PC, Fraser JS, Fischbach MA. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe. 2014;16(4):495–503. doi: 10.1016/j.chom.2014.09.001.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Reigstad CS, Kashyap PC. Beyond phylotyping: understanding the impact of gut microbiota on host biology. Neurogastroenterol Motil. 2013;25(5):358–72. doi: 10.1111/nmo.12134.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Tejada-Simon MV, Pestka JJ. Proinflammatory cytokine and nitric oxide induction in murine macrophages by cell wall and cytoplasmic extracts of lactic acid bacteria. J Food Prot. 1999;62(12):1435–44.PubMedGoogle Scholar
  69. 69.
    Korhonen R, Korpela R, Saxelin M, Maki M, Kankaanranta H, Moilanen E. Induction of nitric oxide synthesis by probiotic Lactobacillus rhamnosus GG in J774 macrophages and human T84 intestinal epithelial cells. Inflammation. 2001;25(4):223–32.PubMedCrossRefGoogle Scholar
  70. 70.
    Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB. Bacteria-host communication: the language of hormones. Proc Natl Acad Sci U S A. 2003;100(15):8951–6. doi: 10.1073/pnas.1537100100.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Guthrie GD, Nicholson-Guthrie CS. gamma-Aminobutyric acid uptake by a bacterial system with neurotransmitter binding characteristics. Proc Natl Acad Sci U S A. 1989;86(19):7378–81.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Lyte M. Microbial endocrinology and infectious disease in the 21st century. Trends Microbiol. 2004;12(1):14–20.PubMedCrossRefGoogle Scholar
  73. 73.
    Cherbut C. Motor effects of short-chain fatty acids and lactate in the gastrointestinal tract. Proc Nutr Soc. 2003;62(1):95–9. doi: 10.1079/PNS2002213.PubMedCrossRefGoogle Scholar
  74. 74.
    Kamath PS, Phillips SF, Zinsmeister AR. Short-chain fatty acids stimulate ileal motility in humans. Gastroenterology. 1988;95(6):1496–502.PubMedCrossRefGoogle Scholar
  75. 75.
    Yajima T. Contractile effect of short-chain fatty acids on the isolated colon of the rat. J Physiol. 1985;368:667–78.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Cherbut C, Aube AC, Blottiere HM, Pacaud P, Scarpignato C, Galmiche JP. In vitro contractile effects of short chain fatty acids in the rat terminal ileum. Gut. 1996;38(1):53–8.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Plaisancie P, Dumoulin V, Chayvialle JA, Cuber JC. Luminal peptide YY-releasing factors in the isolated vascularly perfused rat colon. J Endocrinol. 1996;151(3):421–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Fukumoto S, Tatewaki M, Yamada T, Fujimiya M, Mantyh C, Voss M, Eubanks S, Harris M, Pappas TN, Takahashi T. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am J Physiol Regul Integr Comp Physiol. 2003;284(5):R1269–76. doi: 10.1152/ajpregu.00442.2002.PubMedCrossRefGoogle Scholar
  79. 79.
    Grider JR, Piland BE. The peristaltic reflex induced by short-chain fatty acids is mediated by sequential release of 5-HT and neuronal CGRP but not BDNF. Am J Physiol Gastrointest Liver Physiol. 2007;292(1):G429–37. doi: 10.1152/ajpgi.00376.2006.PubMedCrossRefGoogle Scholar
  80. 80.
    Hurst NR, Kendig DM, Murthy KS, Grider JR. The short chain fatty acids, butyrate and propionate, have differential effects on the motility of the guinea pig colon. Neurogastroenterol Motil. 2014;26(11):1586–96. doi: 10.1111/nmo.12425.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Soret R, Chevalier J, De Coppet P, Poupeau G, Derkinderen P, Segain JP, Neunlist M. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology. 2010;138(5):1772–82. doi: 10.1053/j.gastro.2010.01.053.PubMedCrossRefGoogle Scholar
  82. 82.
    Kirwan WO, Smith AN, Mitchell WD, Falconer JD, Eastwood MA. Bile acids and colonic motility in the rabbit and the human. Gut. 1975;16(11):894–902.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Alemi F, Poole DP, Chiu J, Schoonjans K, Cattaruzza F, Grider JR, Bunnett NW, Corvera CU. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology. 2013;144(1):145–54. doi: 10.1053/j.gastro.2012.09.055.PubMedCrossRefGoogle Scholar
  84. 84.
    Bar F, Von Koschitzky H, Roblick U, Bruch HP, Schulze L, Sonnenborn U, Bottner M, Wedel T. Cell-free supernatants of Escherichia coli Nissle 1917 modulate human colonic motility: evidence from an in vitro organ bath study. Neurogastroenterol Motil. 2009;21(5):559–66.e16–7. doi: 10.1111/j.1365-2982.2008.01258.x.PubMedCrossRefGoogle Scholar
  85. 85.
    Al-Nedawi K, Mian MF, Hossain N, Karimi K, Mao YK, Forsythe P, Min KK, Stanisz AM, Kunze WA, Bienenstock J. Gut commensal microvesicles reproduce parent bacterial signals to host immune and enteric nervous systems. FASEB J. 2015;29(2):684–95. doi: 10.1096/fj.14-259721.PubMedCrossRefGoogle Scholar
  86. 86.
    Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106(10):3698–703. doi: 10.1073/pnas.0812874106.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Sjogren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, Backhed F, Ohlsson C. The gut microbiota regulates bone mass in mice. J Bone Miner Res. 2012;27(6):1357–67. doi: 10.1002/jbmr.1588.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264–76. doi: 10.1016/j.cell.2015.02.047.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Reigstad CS, Salmonson CE, Rainey 3rd JF, Szurszewski JH, Linden DR, Sonnenburg JL, Farrugia G, Kashyap PC. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2015;29(4):1395–403. doi: 10.1096/fj.14-259598.PubMedCrossRefGoogle Scholar
  90. 90.
    Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. 2013;18(6):666–73. doi: 10.1038/mp.2012.77.PubMedCrossRefGoogle Scholar
  91. 91.
    Essien BE, Grasberger H, Romain RD, Law DJ, Veniaminova NA, Saqui-Salces M, El-Zaatari M, Tessier A, Hayes MM, Yang AC, Merchant JL. ZBP-89 regulates expression of tryptophan hydroxylase I and mucosal defense against Salmonella typhimurium in mice. Gastroenterology. 2013;144(7):1466–77.e1–9. doi: 10.1053/j.gastro.2013.01.057.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Li Z, Chalazonitis A, Huang YY, Mann JJ, Margolis KG, Yang QM, Kim DO, Cote F, Mallet J, Gershon MD. Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J Neurosci. 2011;31(24):8998–9009.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Stephen AM, Wiggins HS, Cummings JH. Effect of changing transit time on colonic microbial metabolism in man. Gut. 1987;28(5):601–9.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Ward NL, Pieretti A, Dowd SE, Cox SB, Goldstein AM. Intestinal aganglionosis is associated with early and sustained disruption of the colonic microbiome. Neurogastroenterol Motil. 2012;24(9):874–e400. doi: 10.1111/j.1365-2982.2012.01937.x.PubMedCrossRefGoogle Scholar
  95. 95.
    Allison C, McFarlan C, MacFarlane GT. Studies on mixed populations of human intestinal bacteria grown in single-stage and multistage continuous culture systems. Appl Environ Microbiol. 1989;55(3):672–8.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Oufir LE, Barry JL, Flourie B, Cherbut C, Cloarec D, Bornet F, Galmiche JP. Relationships between transit time in man and in vitro fermentation of dietary fiber by fecal bacteria. Eur J Clin Nutr. 2000;54(8):603–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Lyte M, Bailey MT. Neuroendocrine-bacterial interactions in a neurotoxin-induced model of trauma. J Surg Res. 1997;70(2):195–201. doi: 10.1006/jsre.1997.5130.PubMedCrossRefGoogle Scholar
  98. 98.
    Chen C, Brown DR, Xie Y, Green BT, Lyte M. Catecholamines modulate Escherichia coli O157:H7 adherence to murine cecal mucosa. Shock. 2003;20(2):183–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Kashyap PC, Marcobal A, Ursell LK, Larauche M, Duboc H, Earle KA, Sonnenburg ED, Ferreyra JA, Higginbottom SK, Million M, Tache Y, Pasricha PJ, Knight R, Farrugia G, Sonnenburg JL. Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastroenterology. 2013;144(5):967–77. doi: 10.1053/j.gastro.2013.01.047.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Dey N, Wagner VE, Blanton LV, Cheng J, Fontana L, Haque R, Ahmed T, Gordon JI. Regulators of gut motility revealed by a gnotobiotic model of diet-microbiome interactions related to travel. Cell. 2015;163(1):95–107. doi: 10.1016/j.cell.2015.08.059.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Goehler LE, Gaykema RP, Opitz N, Reddaway R, Badr N, Lyte M. Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun. 2005;19(4):334–44. doi: 10.1016/j.bbi.2004.09.002.PubMedCrossRefGoogle Scholar
  102. 102.
    Lyte M, Li W, Opitz N, Gaykema RP, Goehler LE. Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiol Behav. 2006;89(3):350–7. doi: 10.1016/j.physbeh.2006.06.019.PubMedCrossRefGoogle Scholar
  103. 103.
    Keating C, Beyak M, Foley S, Singh G, Marsden C, Spiller R, Grundy D. Afferent hypersensitivity in a mouse model of post-inflammatory gut dysfunction: role of altered serotonin metabolism. J Physiol. 2008;586(Pt 18):4517–30. doi: 10.1113/jphysiol.2008.156984.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Ochoa-Cortes F, Ramos-Lomas T, Miranda-Morales M, Spreadbury I, Ibeakanma C, Barajas-Lopez C, Vanner S. Bacterial cell products signal to mouse colonic nociceptive dorsal root ganglia neurons. Am J Physiol Gastrointest Liver Physiol. 2010;299(3):G723–32. doi: 10.1152/ajpgi.00494.2009.PubMedCrossRefGoogle Scholar
  105. 105.
    Ait-Belgnaoui A, Han W, Lamine F, Eutamene H, Fioramonti J, Bueno L, Theodorou V. Lactobacillus farciminis treatment suppresses stress induced visceral hypersensitivity: a possible action through interaction with epithelial cell cytoskeleton contraction. Gut. 2006;55(8):1090–4. doi: 10.1136/gut.2005.084194.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Kamiya T, Wang L, Forsythe P, Goettsche G, Mao Y, Wang Y, Tougas G, Bienenstock J. Inhibitory effects of Lactobacillus reuteri on visceral pain induced by colorectal distension in Sprague-Dawley rats. Gut. 2006;55(2):191–6. doi: 10.1136/gut.2005.070987.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Wang B, Mao YK, Diorio C, Pasyk M, Wu RY, Bienenstock J, Kunze WA. Luminal administration ex vivo of a live Lactobacillus species moderates mouse jejunal motility within minutes. FASEB J. 2010;24(10):4078–88. doi: 10.1096/fj.09-153841.PubMedCrossRefGoogle Scholar
  108. 108.
    Wang B, Mao YK, Diorio C, Wang L, Huizinga JD, Bienenstock J, Kunze W. Lactobacillus reuteri ingestion and IK(Ca) channel blockade have similar effects on rat colon motility and myenteric neurones. Neurogastroenterol Motil. 2010;22(1):98–107.e33. doi: 10.1111/j.1365-2982.2009.01384.x.PubMedGoogle Scholar
  109. 109.
    Rousseaux C, Thuru X, Gelot A, Barnich N, Neut C, Dubuquoy L, Dubuquoy C, Merour E, Geboes K, Chamaillard M, Ouwehand A, Leyer G, Carcano D, Colombel JF, Ardid D, Desreumaux P. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med. 2007;13(1):35–7. doi: 10.1038/nm1521.PubMedCrossRefGoogle Scholar
  110. 110.
    Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, Deng Y, Blennerhassett PA, Fahnestock M, Moine D, Berger B, Huizinga JD, Kunze W, McLean PG, Bergonzelli GE, Collins SM, Verdu EF. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil. 2011;23(12):1132–9. doi: 10.1111/j.1365-2982.2011.01796.x.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Khoshdel A, Verdu EF, Kunze W, McLean P, Bergonzelli G, Huizinga JD. Bifidobacterium longum NCC3001 inhibits AH neuron excitability. Neurogastroenterol Motil. 2013;25(7):e478–84. doi: 10.1111/nmo.12147.PubMedCrossRefGoogle Scholar
  112. 112.
    McVey Neufeld KA, Mao YK, Bienenstock J, Foster JA, Kunze WA. The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol Motil. 2013;25(2):183–e88. doi: 10.1111/nmo.12049.PubMedCrossRefGoogle Scholar
  113. 113.
    McVey Neufeld KA, Perez-Burgos A, Mao YK, Bienenstock J, Kunze WA. The gut microbiome restores intrinsic and extrinsic nerve function in germ-free mice accompanied by changes in calbindin. Neurogastroenterol Motil. 2015;27(5):627–36. doi: 10.1111/nmo.12534.PubMedCrossRefGoogle Scholar
  114. 114.
    Matsumoto M, Kibe R, Ooga T, Aiba Y, Sawaki E, Koga Y, Benno Y. Cerebral low-molecular metabolites influenced by intestinal microbiota: a pilot study. Front Syst Neurosci. 2013;7:9. doi: 10.3389/fnsys.2013.00009.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Diaz Heijtz R, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A. 2011;108(7):3047–52. doi: 10.1073/pnas.1010529108.PubMedCrossRefGoogle Scholar
  116. 116.
    Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, Deng Y, Blennerhassett P, Macri J, McCoy KD, Verdu EF, Collins SM. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141(2):599–609.e1–3. doi: 10.1053/j.gastro.2011.04.052.PubMedCrossRefGoogle Scholar
  117. 117.
    Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil. 2011;23(3):255–64.e119. doi: 10.1111/j.1365-2982.2010.01620.x.PubMedCrossRefGoogle Scholar
  118. 118.
    Yurdaydin C, Walsh TJ, Engler HD, Ha JH, Li Y, Jones EA, Basile AS. Gut bacteria provide precursors of benzodiazepine receptor ligands in a rat model of hepatic encephalopathy. Brain Res. 1995;679(1):42–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Bercik P, Verdu EF, Foster JA, Macri J, Potter M, Huang X, Malinowski P, Jackson W, Blennerhassett P, Neufeld KA, Lu J, Khan WI, Corthesy-Theulaz I, Cherbut C, Bergonzelli GE, Collins SM. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology. 2010;139(6):2102–12.e1. doi: 10.1053/j.gastro.2010.06.063.PubMedCrossRefGoogle Scholar
  120. 120.
    Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ, Macqueen G, Sherman PM. Bacterial infection causes stress-induced memory dysfunction in mice. Gut. 2011;60(3):307–17. doi: 10.1136/gut.2009.202515.PubMedCrossRefGoogle Scholar
  121. 121.
    Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050–5. doi: 10.1073/pnas.1102999108.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience. 2010;170(4):1179–88. doi: 10.1016/j.neuroscience.2010.08.005.PubMedCrossRefGoogle Scholar
  123. 123.
    Nishino R, Mikami K, Takahashi H, Tomonaga S, Furuse M, Hiramoto T, Aiba Y, Koga Y, Sudo N. Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods. Neurogastroenterol Motil. 2013;25(6):521–8. doi: 10.1111/nmo.12110.PubMedCrossRefGoogle Scholar
  124. 124.
    Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, Bisson JF, Rougeot C, Pichelin M, Cazaubiel M, Cazaubiel JM. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr. 2011;105(5):755–64. doi: 10.1017/S0007114510004319.PubMedCrossRefGoogle Scholar
  125. 125.
    Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, Guyonnet D, Legrain-Raspaud S, Trotin B, Naliboff B, Mayer EA. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 2013;144(7):1394–401.e1–4. doi: 10.1053/j.gastro.2013.02.043.PubMedCrossRefGoogle Scholar
  126. 126.
    Ahluwalia V, Wade JB, Heuman DM, Hammeke TA, Sanyal AJ, Sterling RK, Stravitz RT, Luketic V, Siddiqui MS, Puri P, Fuchs M, Lennon MJ, Kraft KA, Gilles H, White MB, Noble NA, Bajaj JS. Enhancement of functional connectivity, working memory and inhibitory control on multi-modal brain MR imaging with Rifaximin in Cirrhosis: implications for the gut-liver-brain axis. Metab Brain Dis. 2014;29(4):1017–25. doi: 10.1007/s11011-014-9507-6.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C, Koga Y. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558(Pt 1):263–75. doi: 10.1113/jphysiol.2004.063388.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Sun Y, Zhang M, Chen CC, Gillilland 3rd M, Sun X, El-Zaatari M, Huffnagle GB, Young VB, Zhang J, Hong SC, Chang YM, Gumucio DL, Owyang C, Kao JY. Stress-induced corticotropin-releasing hormone-mediated NLRP6 inflammasome inhibition and transmissible enteritis in mice. Gastroenterology. 2013;144(7):1478–87.e1–8. doi: 10.1053/j.gastro.2013.02.038.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Gilbert JA, Krajmalnik-Brown R, Porazinska DL, Weiss SJ, Knight R. Toward effective probiotics for autism and other neurodevelopmental disorders. Cell. 2013;155(7):1446–8. doi: 10.1016/j.cell.2013.11.035.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Balsari A, Ceccarelli A, Dubini F, Fesce E, Poli G. The fecal microbial population in the irritable bowel syndrome. Microbiologica. 1982;5(3):185–94.PubMedGoogle Scholar
  131. 131.
    Malinen E, Rinttila T, Kajander K, Matto J, Kassinen A, Krogius L, Saarela M, Korpela R, Palva A. Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR. Am J Gastroenterol. 2005;100(2):373–82. doi: 10.1111/j.1572-0241.2005.40312.x.PubMedCrossRefGoogle Scholar
  132. 132.
    Rajilic-Stojanovic M, Biagi E, Heilig HG, Kajander K, Kekkonen RA, Tims S, de Vos WM. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology. 2011;141(5):1792–801. doi: 10.1053/j.gastro.2011.07.043.PubMedCrossRefGoogle Scholar
  133. 133.
    Duboc H, Rainteau D, Rajca S, Humbert L, Farabos D, Maubert M, Grondin V, Jouet P, Bouhassira D, Seksik P, Sokol H, Coffin B, Sabate JM. Increase in fecal primary bile acids and dysbiosis in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil. 2012;24(6):513–20.e246–7. doi: 10.1111/j.1365-2982.2012.01893.x.PubMedCrossRefGoogle Scholar
  134. 134.
    Krogius-Kurikka L, Lyra A, Malinen E, Aarnikunnas J, Tuimala J, Paulin L, Makivuokko H, Kajander K, Palva A. Microbial community analysis reveals high level phylogenetic alterations in the overall gastrointestinal microbiota of diarrhoea-predominant irritable bowel syndrome sufferers. BMC Gastroenterol. 2009;9:95. doi: 10.1186/1471-230X-9-95.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Parkes GC, Rayment NB, Hudspith BN, Petrovska L, Lomer MC, Brostoff J, Whelan K, Sanderson JD. Distinct microbial populations exist in the mucosa-associated microbiota of sub-groups of irritable bowel syndrome. Neurogastroenterol Motil. 2012;24(1):31–9. doi: 10.1111/j.1365-2982.2011.01803.x.PubMedCrossRefGoogle Scholar
  136. 136.
    Carroll IM, Ringel-Kulka T, Siddle JP, Ringel Y. Alterations in composition and diversity of the intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil. 2012;24(6):521–30.e248. doi: 10.1111/j.1365-2982.2012.01891.x.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Jeffery IB, O’Toole PW, Ohman L, Claesson MJ, Deane J, Quigley EM, Simren M. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut. 2012;61(7):997–1006. doi: 10.1136/gutjnl-2011-301501.PubMedCrossRefGoogle Scholar
  138. 138.
    Saulnier DM, Riehle K, Mistretta TA, Diaz MA, Mandal D, Raza S, Weidler EM, Qin X, Coarfa C, Milosavljevic A, Petrosino JF, Highlander S, Gibbs R, Lynch SV, Shulman RJ, Versalovic J. Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology. 2011;141(5):1782–91. doi: 10.1053/j.gastro.2011.06.072.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Rigsbee L, Agans R, Shankar V, Kenche H, Khamis HJ, Michail S, Paliy O. Quantitative profiling of gut microbiota of children with diarrhea-predominant irritable bowel syndrome. Am J Gastroenterol. 2012;107(11):1740–51. doi: 10.1038/ajg.2012.287.PubMedCrossRefGoogle Scholar
  140. 140.
    Nikfar S, Rahimi R, Rahimi F, Derakhshani S, Abdollahi M. Efficacy of probiotics in irritable bowel syndrome: a meta-analysis of randomized, controlled trials. Dis Colon Rectum. 2008;51(12):1775–80. doi: 10.1007/s10350-008-9335-z.PubMedCrossRefGoogle Scholar
  141. 141.
    McFarland LV, Dublin S. Meta-analysis of probiotics for the treatment of irritable bowel syndrome. World J Gastroenterol. 2008;14(17):2650–61.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Moayyedi P, Ford AC, Talley NJ, Cremonini F, Foxx-Orenstein AE, Brandt LJ, Quigley EM. The efficacy of probiotics in the treatment of irritable bowel syndrome: a systematic review. Gut. 2010;59(3):325–32. doi: 10.1136/gut.2008.167270.PubMedCrossRefGoogle Scholar
  143. 143.
    Hoveyda N, Heneghan C, Mahtani KR, Perera R, Roberts N, Glasziou P. A systematic review and meta-analysis: probiotics in the treatment of irritable bowel syndrome. BMC Gastroenterol. 2009;9:15. doi: 10.1186/1471-230X-9-15.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Ford AC, Quigley EM, Lacy BE, Lembo AJ, Saito YA, Schiller LR, Soffer EE, Spiegel BM, Moayyedi P. Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. Am J Gastroenterol. 2014;109(10):1547–61; quiz 6, 62. doi:  10.1038/ajg.2014.202.
  145. 145.
    Didari T, Mozaffari S, Nikfar S, Abdollahi M. Effectiveness of probiotics in irritable bowel syndrome: updated systematic review with meta-analysis. World J Gastroenterol. 2015;21(10):3072–84. doi: 10.3748/wjg.v21.i10.3072.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Tiequn B, Guanqun C, Shuo Z. Therapeutic effects of Lactobacillus in treating irritable bowel syndrome: a meta-analysis. Intern Med. 2015;54(3):243–9. doi: 10.2169/internalmedicine.54.2710.PubMedCrossRefGoogle Scholar
  147. 147.
    Korterink JJ, Ockeloen L, Benninga MA, Tabbers MM, Hilbink M, Deckers-Kocken JM. Probiotics for childhood functional gastrointestinal disorders: a systematic review and meta-analysis. Acta Paediatr. 2014;103(4):365–72. doi: 10.1111/apa.12513.PubMedCrossRefGoogle Scholar
  148. 148.
    Horvath A, Dziechciarz P, Szajewska H. Meta-analysis: Lactobacillus rhamnosus GG for abdominal pain-related functional gastrointestinal disorders in childhood. Aliment Pharmacol Ther. 2011;33(12):1302–10. doi: 10.1111/j.1365-2036.2011.04665.x.PubMedCrossRefGoogle Scholar
  149. 149.
    Mendall MA, Kumar D. Antibiotic use, childhood affluence and irritable bowel syndrome (IBS). Eur J Gastroenterol Hepatol. 1998;10(1):59–62.PubMedCrossRefGoogle Scholar
  150. 150.
    Maxwell PR, Rink E, Kumar D, Mendall MA. Antibiotics increase functional abdominal symptoms. Am J Gastroenterol. 2002;97(1):104–8. doi: 10.1111/j.1572-0241.2002.05428.x.PubMedCrossRefGoogle Scholar
  151. 151.
    Pimentel M, Chow EJ, Lin HC. Eradication of small intestinal bacterial overgrowth reduces symptoms of irritable bowel syndrome. Am J Gastroenterol. 2000;95(12):3503–6. doi: 10.1111/j.1572-0241.2000.03368.x.PubMedCrossRefGoogle Scholar
  152. 152.
    Di Stefano M, Strocchi A, Malservisi S, Veneto G, Ferrieri A, Corazza GR. Non-absorbable antibiotics for managing intestinal gas production and gas-related symptoms. Aliment Pharmacol Ther. 2000;14(8):1001–8.PubMedCrossRefGoogle Scholar
  153. 153.
    Pimentel M, Lembo A, Chey WD, Zakko S, Ringel Y, Yu J, Mareya SM, Shaw AL, Bortey E, Forbes WP, Group TS. Rifaximin therapy for patients with irritable bowel syndrome without constipation. N Engl J Med. 2011;364(1):22–32. doi: 10.1056/NEJMoa1004409.PubMedCrossRefGoogle Scholar
  154. 154.
    Rezaie A, Nikfar S, Abdollahi M. The place of antibiotics in management of irritable bowel syndrome: a systematic review and meta-analysis. Arch Med Sci. 2010;6(1):49–55. doi: 10.5114/aoms.2010.13507.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Collins BS, Lin HC. Double-blind, placebo-controlled antibiotic treatment study of small intestinal bacterial overgrowth in children with chronic abdominal pain. J Pediatr Gastroenterol Nutr. 2011;52(4):382–6. doi: 10.1097/MPG.0b013e3181effa3b.PubMedCrossRefGoogle Scholar
  156. 156.
    Olesen M, Gudmand-Hoyer E. Efficacy, safety, and tolerability of fructooligosaccharides in the treatment of irritable bowel syndrome. Am J Clin Nutr. 2000;72(6):1570–5.PubMedGoogle Scholar
  157. 157.
    Paineau D, Payen F, Panserieu S, Coulombier G, Sobaszek A, Lartigau I, Brabet M, Galmiche JP, Tripodi D, Sacher-Huvelin S, Chapalain V, Zourabichvili O, Respondek F, Wagner A, Bornet FR. The effects of regular consumption of short-chain fructo-oligosaccharides on digestive comfort of subjects with minor functional bowel disorders. Br J Nutr. 2008;99(2):311–8. doi: 10.1017/S000711450779894X.PubMedCrossRefGoogle Scholar
  158. 158.
    Silk DB, Davis A, Vulevic J, Tzortzis G, Gibson GR. Clinical trial: the effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment Pharmacol Ther. 2009;29(5):508–18. doi: 10.1111/j.1365-2036.2008.03911.x.PubMedCrossRefGoogle Scholar
  159. 159.
    Zeng H, Lazarova DL, Bordonaro M. Mechanisms linking dietary fiber, gut microbiota and colon cancer prevention. World J Gastrointest Oncol. 2014;6(2):41–51. doi: 10.4251/wjgo.v6.i2.41.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Huertas-Ceballos AA, Logan S, Bennett C, Macarthur C. Dietary interventions for recurrent abdominal pain (RAP) and irritable bowel syndrome (IBS) in childhood. Cochrane Database Syst Rev. 2009;1, CD003019. doi: 10.1002/14651858.CD003019.pub3.Google Scholar
  161. 161.
    Christensen MF. Do bulk preparations help in cases of recurrent abdominal pain in children? A controlled study. Ugeskr Laeger. 1982;144(10):714–5.PubMedGoogle Scholar
  162. 162.
    Feldman W, McGrath P, Hodgson C, Ritter H, Shipman RT. The use of dietary fiber in the management of simple, childhood, idiopathic, recurrent, abdominal pain. Results in a prospective, double-blind, randomized, controlled trial. Am J Dis Child. 1985;139(12):1216–8.PubMedCrossRefGoogle Scholar
  163. 163.
    Shulman RJ, Hollister EB, Cain K, Czyzewski DI, Self MM, Weidler EM, Devaraj S, Luna RA, Versalovic J, Heitkemper M. Psyllium fiber reduces abdominal pain in children with irritable bowel syndrome in a randomized, double-blind trial. Clin Gastroenterol Hepatol. 2016. doi: 10.1016/j.cgh.2016.03.045. [Epub ahead of print].
  164. 164.
    Rao SS, Yu S, Fedewa A. Systematic review: dietary fibre and FODMAP-restricted diet in the management of constipation and irritable bowel syndrome. Aliment Pharmacol Ther. 2015;41(12):1256–70. doi: 10.1111/apt.13167.PubMedCrossRefGoogle Scholar
  165. 165.
    King TS, Elia M, Hunter JO. Abnormal colonic fermentation in irritable bowel syndrome. Lancet. 1998;352(9135):1187–9.PubMedCrossRefGoogle Scholar
  166. 166.
    Murray K, Wilkinson-Smith V, Hoad C, Costigan C, Cox E, Lam C, Marciani L, Gowland P, Spiller RC. Differential effects of FODMAPs (fermentable oligo-, di-, mono-saccharides and polyols) on small and large intestinal contents in healthy subjects shown by MRI. Am J Gastroenterol. 2014;109(1):110–9. doi: 10.1038/ajg.2013.386.PubMedCrossRefGoogle Scholar
  167. 167.
    Austin GL, Dalton CB, Hu Y, Morris CB, Hankins J, Weinland SR, Westman EC, Yancy Jr WS, Drossman DA. A very low-carbohydrate diet improves symptoms and quality of life in diarrhea-predominant irritable bowel syndrome. Clin Gastroenterol Hepatol. 2009;7(6):706–8.e1. doi: 10.1016/j.cgh.2009.02.023.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Shepherd SJ, Parker FC, Muir JG, Gibson PR. Dietary triggers of abdominal symptoms in patients with irritable bowel syndrome: randomized placebo-controlled evidence. Clin Gastroenterol Hepatol. 2008;6(7):765–71. doi: 10.1016/j.cgh.2008.02.058.PubMedCrossRefGoogle Scholar
  169. 169.
    Halmos EP, Power VA, Shepherd SJ, Gibson PR, Muir JG. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology. 2014;146(1):67–75.e5. doi: 10.1053/j.gastro.2013.09.046.PubMedCrossRefGoogle Scholar
  170. 170.
    Chumpitazi BP, Hollister EB, Oezguen N, Tsai CM, McMeans AR, Luna RA, Savidge TC, Versalovic J, Shulman RJ. Gut microbiota influences low fermentable substrate diet efficacy in children with irritable bowel syndrome. Gut Microbes. 2014;5(2):165–75. doi: 10.4161/gmic.27923.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Chumpitazi BP, Cope JL, Hollister EB, Tsai CM, McMeans AR, Luna RA, Versalovic J, Shulman RJ. Randomised clinical trial: gut microbiome biomarkers are associated with clinical response to a low FODMAP diet in children with the irritable bowel syndrome. Aliment Pharmacol Ther. 2015;42(4):418–27. doi: 10.1111/apt.13286.
  172. 172.
    Halmos EP, Christophersen CT, Bird AR, Shepherd SJ, Gibson PR, Muir JG. Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut. 2015;64(1):93–100. doi: 10.1136/gutjnl-2014-307264.PubMedCrossRefGoogle Scholar
  173. 173.
    Staudacher HM, Lomer MC, Anderson JL, Barrett JS, Muir JG, Irving PM, Whelan K. Fermentable carbohydrate restriction reduces luminal bifidobacteria and gastrointestinal symptoms in patients with irritable bowel syndrome. J Nutr. 2012;142(8):1510–8. doi: 10.3945/jn.112.159285.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Geoffrey A. Preidis
    • 1
  • Bruno P. Chumpitazi
    • 1
  • Robert J. Shulman
    • 1
    Email author
  1. 1.Section of Gastroenterology, Hepatology and Nutrition, Department of PediatricsBaylor College of Medicine, and Texas Children’s HospitalHoustonUSA

Personalised recommendations